503 research outputs found

    Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials

    Get PDF
    The development of a dynamic chemistry toolbox to endow materials dynamic behavior has been key to the rational design of future smart materials. The rise of supramolecular and dynamic covalent chemistry offers many approaches to the construction of dynamic polymers and materials that can adapt, respond, repair, and recycle. Within this toolbox, the building blocks based on 1,2-dithiolanes have become an important scaffold, featuring their reversible polymerization mediated by dynamic covalent disulfide bonds, which enables a unique class of dynamic materials at the intersection of supramolecular polymers and adaptable covalent networks. This Perspective aims to explore the dynamic chemistry of 1,2-dithiolanes as a versatile structural unit for the design of smart materials by summarizing the state of the art as well as providing an overview of the fundamental challenges involved in this research area and its potential future directions

    Strand bias in complementary single-nucleotide polymorphisms of transcribed human sequences: evidence for functional effects of synonymous polymorphisms

    Get PDF
    BACKGROUND: Complementary single-nucleotide polymorphisms (SNPs) may not be distributed equally between two DNA strands if the strands are functionally distinct, such as in transcribed genes. In introns, an excess of A↔G over the complementary C↔T substitutions had previously been found and attributed to transcription-coupled repair (TCR), demonstrating the valuable functional clues that can be obtained by studying such asymmetry. Here we studied asymmetry of human synonymous SNPs (sSNPs) in the fourfold degenerate (FFD) sites as compared to intronic SNPs (iSNPs). RESULTS: The identities of the ancestral bases and the direction of mutations were inferred from human-chimpanzee genomic alignment. After correction for background nucleotide composition, excess of A→G over the complementary T→C polymorphisms, which was observed previously and can be explained by TCR, was confirmed in FFD SNPs and iSNPs. However, when SNPs were separately examined according to whether they mapped to a CpG dinucleotide or not, an excess of C→T over G→A polymorphisms was found in non-CpG site FFD SNPs but was absent from iSNPs and CpG site FFD SNPs. CONCLUSION: The genome-wide discrepancy of human FFD SNPs provides novel evidence for widespread selective pressure due to functional effects of sSNPs. The similar asymmetry pattern of FFD SNPs and iSNPs that map to a CpG can be explained by transcription-coupled mechanisms, including TCR and transcription-coupled mutation. Because of the hypermutability of CpG sites, more CpG site FFD SNPs are relatively younger and have confronted less selection effect than non-CpG FFD SNPs, which can explain the asymmetric discrepancy of CpG site FFD SNPs vs. non-CpG site FFD SNPs

    Toughening a Self-Healable Supramolecular Polymer by Ionic Cluster-Enhanced Iron-Carboxylate Complexes

    Get PDF
    Supramolecular polymers that can heal themselves automatically usually exhibit weakness in mechanical toughness and stretchability. Here we exploit a toughening strategy for a dynamic dry supramolecular network by introducing ionic cluster-enhanced iron-carboxylate complexes. The resulting dry supramolecular network simultaneous exhibits tough mechanical strength, high stretchability, self-healing ability, and processability at room temperature. The excellent performance of these distinct supramolecular polymers is attributed to the hierarchical existence of four types of dynamic combinations in the high-density dry network, including dynamic covalent disulfide bonds, noncovalent H-bonds, iron-carboxylate complexes and ionic clustering interactions. The extremely facile preparation method of this self-healing polymer offers prospects for high-performance low-cost material among others for coatings and wearable devices

    The Definition of Insulin Resistance Using HOMA-IR for Americans of Mexican Descent Using Machine Learning

    Get PDF
    Objective The lack of standardized reference range for the homeostasis model assessment-estimated insulin resistance (HOMA-IR) index has limited its clinical application. This study defines the reference range of HOMA-IR index in an adult Hispanic population based with machine learning methods. Methods This study investigated a Hispanic population of 1854 adults, randomly selected on the basis of 2000 Census tract data in the city of Brownsville, Cameron County. Machine learning methods, support vector machine (SVM) and Bayesian Logistic Regression (BLR), were used to automatically identify measurable variables using standardized values that correlate with HOMA-IR; K-means clustering was then used to classify the individuals by insulin resistance. Results Our study showed that the best cutoff of HOMA-IR for identifying those with insulin resistance is 3.80. There are 39.1% individuals in this Hispanic population with HOMA-IR\u3e3.80. Conclusions Our results are dramatically different using the popular clinical cutoff of 2.60. The high sensitivity and specificity of HOMA-IR\u3e3.80 for insulin resistance provide a critical fundamental for our further efforts to improve the public health of this Hispanic population

    Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)

    Get PDF
    The excessive use of plastics has led to severe global problems involving environmental, energy, and health issues and demands for sustainable and recyclable alternatives. Toward circular plastics, the development of efficient chemical recycling methods without loss of properties or allowing reprocessing into new materials offer tremendous opportunities. Here, we report an intrinsically recyclable and reconfigurable poly(disulfide) polymer using a natural small molecule, thioctic acid (TA), as the feedstock. Taking advantage of its dynamic covalent ring-opening polymerization, this material enables a dual closed-loop chemical recycling network among TA monomers and two kinds of polymer products, including self-healing elastomers and mechanically robust ionic films. Mild and complete depolymerization into monomers in diluted alkaline aqueous solution is achieved with yields of recovered monomers up to 86%. The polymer materials can be repeatedly recycled and reused with reconfigurable polymer composition and tunable mechanical properties offering prospects for sustainable functional plastics

    Acylhydrazine-based reticular hydrogen bonds enable robust, tough, and dynamic supramolecular materials

    Get PDF
    Supramolecular materials are widely recognized among the most promising candidates for future generations of sustainable plastics because of their dynamic functions. However, the weak noncovalent cross-links that endow dynamic properties usually trade off materials’ mechanical robustness. Here, we present the discovery of a simple and robust supramolecular cross-linking strategy based on acylhydrazine units, which can hierarchically cross-link the solvent-free network of poly(disulfides) by forming unique reticular hydrogen bonds, enabling the conversion of soft into stiff dynamic material. The resulting supramolecular materials exhibit increase in stiffness exceeding two to three orders of magnitude compared to those based on the hydrogen-bonding network of analogous carboxylic acids, simultaneously preserving the repairability, malleability, and recyclability of the materials. The materials also show high adhesion strength on various surfaces while allowing multiple surface attachment cycles without fatigue, illustrating a viable approach how robustness and dynamics can be merged in future material design
    • …
    corecore