4,437 research outputs found

    Single Transverse Spin Asymmetries at Parton Level

    Full text link
    Two factorization approaches have been proposed for single transverse spin asymmetries. One is the collinear factorization, another is the transverse-momentum-dependent factorization. They have been previously derived in a formal way by using diagram expansion at hadron level. If the two factorizations hold or can be proven, they should also hold when we replace hadrons with parton states. We examine these two factorizations at parton level with massless partons. It is nontrivial to generate these asymmetries at parton level with massless partons because the asymmetries require helicity-flip and nonzero absorptive parts in scattering amplitudes. By constructing suitable parton states with massless partons we derive the two factorizations for the asymmetry in Drell-Yan processes. It is found from our results that the collinear factorization derived at parton level is not the same as that derived at hadron level. Our results with massless partons confirm those derived with single massive parton state in our previous works.Comment: shortened version to match published versio

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio

    Transcutaneous Vagus Nerve Stimulation for the Treatment of Depression: A Study Protocol for a Double Blinded Randomized Clinical Trial

    Get PDF
    Background: Depressive disorders are the most common form of mental disorders in community and health care settings. Unfortunately, the treatment of Major Depressive Disorder (MDD) is far from satisfactory. Vagus nerve stimulation (VNS) is a relatively new and promising physical treatment for depressive disorders. One particularly appealing element of VNS is the long-term benefit in mood regulation. However, because this intervention involves surgery, perioperative risks, and potentially significant side effects, this treatment has been limited to those patients with treatment-resistant depression who have failed medication trials and exhausted established somatic treatments for major depression, due to intolerance or lack of response. This double-blinded randomized clinical trial aims to overcome these limitations by introducing a novel method of stimulating superficial branches of the vagus nerve on the ear to treat MDD. The rationale is that direct stimulation of the afferent nerve fibers on the ear area with afferent vagus nerve distribution should produce a similar effect as classic VNS in reducing depressive symptoms without the burden of surgical intervention. Design: One hundred twenty cases (60 males) of volunteer patients with mild and moderate depression will be randomly divided into transcutaneous vagus nerve stimulation group (tVNS) and sham tVNS group. The treatment period lasts 4 months and all clinical and physiological measurements are acquired at the beginning and the end of the treatment period. Discussion: This study has the potential to significantly extend the application of VNS treatment for MDD and other disorders (including epilepsy, bipolar disorder, and morbid obesity), resulting in direct benefit to the patients suffering from these highly prevalent disorders. In addition, the results of this double-blinded clinical trial will shed new light on our understanding of acupuncture point specificity, and development of methodologies in clinical trials of acupuncture treatment

    The CDEX-1 1 kg Point-Contact Germanium Detector for Low Mass Dark Matter Searches

    Full text link
    The CDEX Collaboration has been established for direct detection of light dark matter particles, using ultra-low energy threshold p-type point-contact germanium detectors, in China JinPing underground Laboratory (CJPL). The first 1 kg point-contact germanium detector with a sub-keV energy threshold has been tested in a passive shielding system located in CJPL. The outputs from both the point-contact p+ electrode and the outside n+ electrode make it possible to scan the lower energy range of less than 1 keV and at the same time to detect the higher energy range up to 3 MeV. The outputs from both p+ and n+ electrode may also provide a more powerful method for signal discrimination for dark matter experiment. Some key parameters, including energy resolution, dead time, decay times of internal X-rays, and system stability, have been tested and measured. The results show that the 1 kg point-contact germanium detector, together with its shielding system and electronics, can run smoothly with good performances. This detector system will be deployed for dark matter search experiments.Comment: 6 pages, 8 figure

    Shunt Active Power Filter System Design for Inter-harmonic

    Get PDF
    Given the complex situations of the grid with inter-harmonics, three-level model of shunt active power filter (SAPF) was built. For the harmonics accurate detection, the CPT principle was used to detect the fundamental component of the grid. The inter-harmonics, parameter fluctuation of APF and the deadband effect were considered as the non-periodic disturbance to the controller. To eliminate the non-periodic disturbance impact on the controller and to improve the control system performance, equivalent input-disturbance (EID) was used based on the traditional repetitive controller. With Matlab and three-level test platform, the SAPF control system was built. The performance of detection and compensation for harmonic and inter-harmonic was verified by the simulation and experiment.DOI: http://dx.doi.org/10.11591/ijpeds.v3i4.444

    A simulation study on the measurement of D0-D0bar mixing parameter y at BES-III

    Full text link
    We established a method on measuring the \dzdzb mixing parameter yy for BESIII experiment at the BEPCII e+ee^+e^- collider. In this method, the doubly tagged ψ(3770)D0D0\psi(3770) \to D^0 \overline{D^0} events, with one DD decays to CP-eigenstates and the other DD decays semileptonically, are used to reconstruct the signals. Since this analysis requires good e/πe/\pi separation, a likelihood approach, which combines the dE/dxdE/dx, time of flight and the electromagnetic shower detectors information, is used for particle identification. We estimate the sensitivity of the measurement of yy to be 0.007 based on a 20fb120fb^{-1} fully simulated MC sample.Comment: 6 pages, 7 figure
    corecore