17,296 research outputs found

    Odd-even staggerings on nuclear binding energy described by the covariant density functional theory

    Full text link
    The odd-even staggerings (OES) on nuclear binding energies are studied systematically within the covariant density functional (CDF) theories, specifically the relativistic Hartree-Fock-Bogoliubov (RHFB) and the relativistic Hartree-Bogoliubov (RHB) theories. Taking the finite-range Gogny force D1S as an effective pairing interaction, both CDF models can provide appropriate descriptions on the OESs of nuclear binding energies for C, O, Ca, Ni, Zr, Sn, Ce, Gd and Pb isotopes as well as for N=50 and 82 isotones. However, due to the inconsistence between the non-relativistic pairing interaction and the relativistic effective Lagrangians, there exist some systematical discrepancies from the data, i.e., the underestimated OESs in light C and O isotopes and the overestimated ones in heavy region, respectively. Such discrepancies can be eliminated partially by introducing a ZZ- or NN-dependent strength factor into the pairing force Gogny D1S. In addition, successful descriptions of the occupation numbers of Sn isotopes are achieved with the optimized Gogny pairing force. Furthermore, the analysis of the systematics of both pairing effects and nuclear binding energy indicate the requirement of an unified relativistic mechanism in both p-p and p-h channels to improve the quantitative precision of the theory.Comment: 10pages, 6 figures, 4 table

    Suppressing disease spreading by using information diffusion on multiplex networks

    Get PDF
    Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.Comment: 11 pages, 8 figure

    Stochastic Electron Acceleration in Shell-Type Supernova Remnants II

    Full text link
    We discuss the generic characteristics of stochastic particle acceleration by a fully developed turbulence spectrum and show that resonant interactions of particles with high speed waves dominate the acceleration process. To produce the relativistic electrons inferred from the broadband spectrum of a few well-observed shell-type supernova remnants in the leptonic scenario for the TeV emission, fast mode waves must be excited effectively in the downstream and dominate the turbulence in the subsonic phase. Strong collisionless non-relativistic astrophysical shocks are studied with the assumption of a constant Aflven speed. The energy density of non-thermal electrons is found to be comparable to that of the magnetic field. With reasonable parameters, the model explains observations of shell-type supernova remnants. More detailed studies are warranted to better understand the nature of supernova shocks.Comment: 5 pages, 7 figures, submitted to Proceedings of the Conference on "2008 Heidelberg International Symposium on High Energy Gamma-Ray Astronomy
    corecore