262 research outputs found

    Phase-fluctuation Induced Time-Reversal Symmetry Breaking Normal State

    Full text link
    Spontaneous time-reversal symmetry (TRS) breaking plays an important role in studying strongly correlated unconventional superconductors. When the superconducting gap functions with different pairing symmetries compete, an Ising (Z2Z_2) type symmetry breaking occurs due to the locking of the relative phase Δθ12\Delta\theta_{12} via a second order Josephson coupling. The phase locking can take place even in the normal state in the phase fluctuation regime before the onset of superconductivity. If Δθ12=±π2\Delta\theta_{12}=\pm\frac{\pi}{2}, then TRS is broken, otherwise, if Δθ12=0\Delta\theta_{12}=0, or, π\pi, rotational symmetry is broken leading to a nematic state. In both cases, the order parameters possess a 4-fermion structure beyond the scope of mean-field theory. We employ an effective two-component XYXY-model assisted by a renormalization group analysis to address this problem. In addition, a quartetting, or, charge-``4e", superconductivity can also occur above TcT_c. Monte-Carlo simulations are performed and the results are in a good agreement with the renormalization group analysis. Our results provide useful guidance for studying novel symmetry breakings in strongly correlated superconductors.Comment: 4+ pages, 3 figures. References are added. Supplementary Material is updated. Comments are welcom

    IoT-based wearable health monitoring device and its validation for potential critical and emergency applications

    Get PDF
    The COVID-19 pandemic brought the world to a standstill, posing unprecedented challenges for healthcare systems worldwide. The overwhelming number of patients infected with the virus placed an enormous burden on healthcare providers, who struggled to cope with the sheer volume of cases. Furthermore, the lack of effective treatments or vaccines means that quarantining has become a necessary measure to slow the spread of the virus. However, quarantining places a significant burden on healthcare providers, who often lack the resources to monitor patients with mild symptoms or asymptomatic patients. In this study, we propose an Internet of Things (IoT)-based wearable health monitoring system that can remotely monitor the exact locations and physiological parameters of quarantined individuals in real time. The system utilizes a combination of highly miniaturized optoelectronic and electronic technologies, an anti-epidemic watch, a mini-computer, and a monitor terminal to provide real-time updates on physiological parameters. Body temperature, peripheral oxygen saturation (SpO2), and heart rate are recorded as the most important measurements for critical care. If these three physiological parameters are aberrant, then it could represent a life-endangering situation and/or a short period over which irreversible damage may occur. Therefore, these parameters are automatically uploaded to a cloud database for remote monitoring by healthcare providers. The monitor terminal can display real-time health data for multiple patients and provide early warning functions for medical staff. The system significantly reduces the burden on healthcare providers, as it eliminates the need for manual monitoring of patients in quarantine. Moreover, it can help healthcare providers manage the COVID-19 pandemic more effectively by identifying patients who require medical attention in real time. We have validated the system and demonstrated that it is well suited to practical application, making it a promising solution for managing future pandemics. In summary, our IoT-based wearable health monitoring system has the potential to revolutionize healthcare by providing a cost-effective, remote monitoring solution for patients in quarantine. By allowing healthcare providers to monitor patients remotely in real time, the burden on medical resources is reduced, and more efficient use of limited resources is achieved. Furthermore, the system can be easily scaled to manage future pandemics, making it an ideal solution for managing the health challenges of the future

    Instability in stable marriage problem: matching unequally numbered men and women

    Get PDF
    The goal of the stable marriage problem is to match by pair two sets composed by the same number of elements. Due to its widespread applications in the real world, especially the unique importance to the centralized matchmaker, a very large number of questions have been extensively studied in this field. This article considers a generalized form of the stable marriage problem, where different numbers of men and women need to be matched pairwise and the emergence of single men or women is inevitable. Theoretical analysis and numerical simulations confirm that even a small deviation on the number of men and women from the equality condition can have a large impact on the matching solution of the Gale-Shapley algorithm. These results provide insights to many of the real-world applications when matching two sides with an unequal number

    TMRT observations of 26 pulsars at 8.6 GHz

    Full text link
    Integrated pulse profiles at 8.6~GHz obtained with the Shanghai Tian Ma Radio Telescope (TMRT) are presented for a sample of 26 pulsars. Mean flux densities and pulse width parameters of these pulsars are estimated. For eleven pulsars these are the first high-frequency observations and for a further four, our observations have a better signal-to-noise ratio than previous observations. For one (PSR J0742-2822) the 8.6~GHz profiles differs from previously observed profiles. A comparison of 19 profiles with those at other frequencies shows that in nine cases the separation between the outmost leading and trailing components decreases with frequency, roughly in agreement with radius-to-frequency mapping, whereas in the other ten the separation is nearly constant. Different spectral indices of profile components lead to the variation of integrated pulse profile shapes with frequency. In seven pulsars with multi-component profiles, the spectral indices of the central components are steeper than those of the outer components. For the 12 pulsars with multi-component profiles in the high-frequency sample, we estimate the core width using gaussian fitting and discuss the width-period relationship.Comment: 33 pages, 49 figures, 5 Tables; accepted by Ap

    Contrasting Phylogeographic Patterns in Lumnitzera Mangroves Across the Indo-West Pacific

    Get PDF
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley’s line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea

    Ultrathin compound semiconductor on insulator layers for high performance nanoscale transistors

    Full text link
    Over the past several years, the inherent scaling limitations of electron devices have fueled the exploration of high carrier mobility semiconductors as a Si replacement to further enhance the device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been actively studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. This integration, however, presents significant challenges. Conventionally, heteroepitaxial growth of complex multilayers on Si has been explored. Besides complexity, high defect densities and junction leakage currents present limitations in the approach. Motivated by this challenge, here we utilize an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on Si/SiO2 substrates. As a parallel to silicon-on-insulator (SOI) technology14,we use the abbreviation "XOI" to represent our compound semiconductor-on-insulator platform. Through experiments and simulation, the electrical properties of InAs XOI transistors are explored, elucidating the critical role of quantum confinement in the transport properties of ultrathin XOI layers. Importantly, a high quality InAs/dielectric interface is obtained by the use of a novel thermally grown interfacial InAsOx layer (~1 nm thick). The fabricated FETs exhibit an impressive peak transconductance of ~1.6 mS/{\mu}m at VDS=0.5V with ON/OFF current ratio of greater than 10,000 and a subthreshold swing of 107-150 mV/decade for a channel length of ~0.5 {\mu}m
    corecore