559 research outputs found

    Beneficial Effect of the Traditional Chinese Drug Shu-Xue-Tong on Recovery of Spinal Cord Injury in the Rat

    Get PDF
    Shu-Xue-Tong (SXT) is a traditional Chinese drug widely used to ameliorate stagnation of blood flow, such as brain or myocardial infarction. Whether SXT may have therapeutic value for spinal cord injury (SCI), during which ischemia plays an important role in its pathology, remains to be elucidated. We hypothesized that SXT may promote SCI healing by improving spinal cord blood flow (SCBF), and a study was thus designed to explore this possibility. Twenty-five male Sprague-Dawley rats were used. SCI was induced by compression, and SXT was administrated 24 h postinjury for 14 successive days. The effects of SXT were assessed by means of laser-Doppler flowmetry, motor functional analysis (open-field walking and footprint analysis), and histological analysis (hematoxylin-eosin and thionin staining and NeuN immunohistochemistry). SXT significantly promoted SCBF of the contused spinal cord and enhanced the recovery of motor function. Histological analysis indicated that the lesion size was reduced, the pathological changes were ameliorated, and more neurons were preserved. Based on these results we conclude that SXT can effectively improve SCI

    MUSCLE ACTIVATION AND THREE-DIMENSIONAL KINEMATICS OF UPPER EXTREMITY IN SNATCH WEIGHT LIFTING

    Get PDF
    INTRODUCTION: Previously, there was little weightlifting research focused on biomechanics of the elbow and the shoulder joints (Bartonietz, 1996). Therefore, the purposes of this study were to evaluate the kinematics of upper extremity on sagittal plane during 1st pull, transition from the 1st to the 2nd pull, 2nd pull, turnover under the barbell, catch phase, and rising from the squat position phases of snatch weight lifting and to examine upper-limb muscles activity during snatch weight lifting. The EMG signals were analyzed using the normalized linear envelopes

    Influence of variable domain glycosylation on anti-neutrophil cytoplasmic autoantibodies and anti-glomerular basement membrane autoantibodies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pathophysiological significance of variable region glycosylation of autoantibodies is still unclear. In the current study, the influence of the variable region N-linked oligosaccharides on the reactivity of three autoantibody specificities was investigated with Sambucus nigra agglutinin (SNA), which mainly binds to oligosaccharides with terminal α2, 6-linked sialic acid on the variable region of IgG.</p> <p>Methods</p> <p>Twenty-seven patients with serum positive anti-neutrophil cytoplasmic autoantibodies (ANCA) against myeploperoxidase (MPO) or proteinase 3 (PR3), or autoantibodies against glomerular basement membrane (GBM) were included. Total IgG was isolated and separated into non-SNA-binding and SNA-binding fractions with SNA affinity chromatography. Antigen-specific IgG was purified by immunoaffinity chromatography.</p> <p>Results</p> <p>At the same concentration of IgG, the antigen binding level of non-SNA-binding IgG was significantly lower than that of SNA-binding IgG for MPO-ANCA (absorbance value at 405 nm, 0.572 ± 0.590 <it>vs</it>. 0.962 ± 0.670, P < 0.001) and for PR3-ANCA (0.362 ± 0.530 <it>vs</it>. 0.560 ± 0.531, P = 0.003). The antigen binding level of non-SNA-binding IgG was significantly higher than that of SNA-binding IgG for anti-GBM antibodies (1.301 ± 0.594 <it>vs</it>. 1.172 ± 0.583, P = 0.044). The level of variable region glycosylation of total IgG was significantly lower than that of affinity-purified MPO-ANCA (1.021 ± 0.201 <it>vs</it>. 1.434 ± 0.134, P = 0.004). The level of variable region glycosylation of total IgG was significantly higher than that of affinity-purified anti-GBM antibodies (1.034 ± 0.340 <it>vs</it>. 0.734 ± 0.333, P = 0.007). The SNA-binding fraction of MPO-ANCA-containing IgG and PR3-ANCA-containing IgG induced higher levels of neutrophil oxygen radical production than the corresponding non-SNA-binding fractions (P < 0.001 and P = 0.043, respectively). The level of variable region glycosylation of affinity-purified MPO-ANCA was higher in active AAV than the same patients in remission (P = 0.001).</p> <p>Conclusion</p> <p>Characteristics of variable region glycosylation of ANCA and anti-GBM antibodies were different from that of total IgG, which might influence the antigen-binding ability of these antibodies. Variable region glycosylation of ANCA might influence the effect of ANCA-induced neutrophils respiratory burst.</p

    Popup

    Get PDF
    Paper architectures are 3D paper buildings created by folding and cutting. The creation process of paper architecture is often labor-intensive and highly skill-demanding, even with the aid of existing computer-aided design tools. We propose an automatic algorithm for generating paper architectures given a user-specified 3D model. The algorithm is grounded on geometric formulation of planar layout for paper architectures that can be popped-up in a rigid and stable manner, and sufficient conditions for a 3D surface to be popped-up from such a planar layout. Based on these conditions, our algorithm computes a class of paper architectures containing two sets of parallel patches that approximate the input geometry while guaranteed to be physically realizable. The method is demonstrated on a number of architectural examples, and physically engineered results are presented

    Kinematic analysis of countermovement jump performance in response to immediate neuromuscular electrical stimulation

    Get PDF
    The purpose of this study was to examine the effect of neuromuscular electrical stimulation (NMES) immediate intervention training on the countermovement jump (CMJ) height and to explore kinematic differences in the CMJ at each instant. A total of 15 male students who had never received electrical stimulation were randomly selected as the research participants. In the first test, the CMJ performance was completed with an all-out effort. The second experiment was best performed immediately to complete the CMJ operation after NMES for 30 min. Both experiments used a high-speed camera optical capture system to collect kinematic data. The results of this experiment revealed that after im-mediate NMES training, neuromuscular activation causes post-activation potentiation, which increases the height of the center of gravity of the CMJ and affects the angular velocity of the hip joint, the velocity and acceleration of the thigh and the shank and the velocity of the soles of the feet. The use of NMES interventional training based on the improvement of technical movements and physical exercises is recommended in the future

    Bioequivalence Evaluation of Two Formulations of Celecoxib 200 mg Capsules in Healthy volunteers by using a validated LC/MS/MS method

    Get PDF
    The bioequivalence study to compare a new formulation of celecoxib to its reference formulation was designed as an open-label, randomized, single-dose, two-way crossover, comparative bioavailability study by using a validated LC/MS/MS method. In order to determine the plasma concentrations of celecoxib, a sensitive LC/MS/MS method was developed. The method was validated to possess adequate specificity, linearity, precision, accuracy and stability. The linearity of calibration curve was assessed between the concentration intervals (5–2000 ng/mL) with a correlation coefficient over 0.999. Regarding pharmacokinetic investigation, the mean celecoxib AUC0-t values from the test and reference drug formulations were 7360.44 ± 1714.14 h•ng/mL and 7267.48 ± 2077.68 h•ng/mL, respectively, and the corresponding AUC0-∞ values were 8197.45 ± 2040.31 h•ng/mL and 7905.54 ± 2286.12 h•ng/mL, respectively. The Cmax of the test and reference drugs was 705.30 ± 290.63 ng/mL and 703.86 ± 329.91 ng/mL, respectively, and the corresponding Tmax was 3.4 ± 1.6 h and 2.9 ± 1.4 h. Lastly, the T1/2 values of the test and reference drugs were 13.9 ± 7.9 h and 12.9 ± 7.7 h, respectively. The 90% confidence intervals for AUC0-t, AUC0-∞, and Cmax were 97.00-108.85, 98.01-112.09, and 93.20-116.13, respectively, satisfying the bioequivalence criteria of 80-125% range. In conclusion, these results demonstrated that the bioequivalence of two formulations of celecoxib was established successfully by utilizing present developed LC/MS/MS method

    Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis

    Get PDF
    The synaptonemal complex (SC) is a tripartite protein structure consisting of two parallel axial elements (AEs) and a central region. During meiosis, the SC connects paired homologous chromosomes, promoting interhomologue (IH) recombination. Here, we report that, like the CE component Zip1, Saccharomyces cerevisiae axial-element structural protein, Red1, can bind small ubiquitin-like modifier (SUMO) polymeric chains. The Red1–SUMO chain interaction is dispensable for the initiation of meiotic DNA recombination, but it is essential for Tel1- and Mec1-dependent Hop1 phosphorylation, which ensures IH recombination by preventing the inter-sister chromatid DNA repair pathway. Our results also indicate that Red1 and Zip1 may directly sandwich the SUMO chains to mediate SC assembly. We suggest that Red1 and SUMO chains function together to couple homologous recombination and Mec1–Tel1 kinase activation with chromosome synapsis during yeast meiosis
    corecore