6 research outputs found

    Additional file 3 of Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) protein of Lactobacillus gasseri attenuates allergic asthma via immunometabolic change in macrophages

    No full text
    Additional file 3: Table S1. Experimental protocol of ion-exchange chromatography. Table S2. Experimental protocol of size-exclusion chromatography. Table S3. Data collection and refinement statistics of the LGp40 crystal. Figure S1. IL-12p40 levels of crude extracts used to stimulate mouse BMDC. Figure S2. Ion-exchange chromatography of crude extracts on a DEAE-Sepharose Fast Flow column. Figure S3. IL-12p40 levels of IE1-1 to IE4-2 fractions (fractions from ion-exchange chromatography) used to stimulate mouse BMDC. Figure S4. Size-exclusion chromatography of fractions from crude extract IE1 on a Sephacryl S-300 HR column. Figure S5. Size-exclusion chromatography of fractions from crude extract IE2 on a Sephacryl S-300 HR column. Figure S6. Size-exclusion chromatography of fractions from crude extract IE3 on a Sephacryl S-300 HR column. Figure S7. Identification and purification of sub-fraction IE3-3G1. Figure S8. GAPDH derived from probiotics and pathogens are dissimilar. Figure S9. RNA-seq analysis showed differentially regulated gene expression between LGp40 and CDp40-stimulated BMDM. Figure S10. The plasminogen interaction and plasmin activation ability of LGp40 decreased when the GAPDH activity was lost

    MOESM1 of Graphene oxide conjugated with polymers: a study of culture condition to determine whether a bacterial growth stimulant or an antimicrobial agent?

    No full text
    Additional file 1: Figure S1. FTIR spectra. Figure S2. FTIR spectra. Figure S3. The oxidation of GSH by GO sheets and GO-based materials. Figure S4. The ROS assays. Table S1. Instruments with different functions are used to characterize materials. Figure S5. The mean lateral size

    Two-Photon Photoexcited Photodynamic Therapy and Contrast Agent with Antimicrobial Graphene Quantum Dots

    No full text
    A graphene quantum dot (GQD) used as the photosensitizer with high two-photon absorption in the near-infrared region, a large absolute cross section of two-photon excitation (TPE), strong two-photon luminescence, and impressive two-photon stability could be used for dual modality two-photon photodynamic therapy (PDT) and two-photon bioimaging with an ultrashot pulse laser (or defined as TPE). In this study, a GQD efficiently generated reactive oxygen species coupled with TPE, which highly increased the effective PDT ability of both Gram-positive and -negative bacteria, with ultralow energy and an extremely short photoexcitation time generated by TPE. Because of its two-photon properties, a GQD could serve as a promising two-photon contrast agent for observing specimens in depth in three-dimensional biological environments while simultaneously proceeding with PDT action to eliminate bacteria, particularly in multidrug-resistant (MDR) strains. This procedure would provide an efficient alternative approach to easily cope with MDR bacteria
    corecore