6,506 research outputs found

    New Negentropy Optimization Schemes for Blind Signal Extraction of Complex Valued Sources

    Get PDF
    Blind signal extraction, a hot issue in the field of communication signal processing, aims to retrieve the sources through the optimization of contrast functions. Many contrasts based on higher-order statistics such as kurtosis, usually behave sensitive to outliers. Thus, to achieve robust results, nonlinear functions are utilized as contrasts to approximate the negentropy criterion, which is also a classical metric for non-Gaussianity. However, existing methods generally have a high computational cost, hence leading us to address the problem of efficient optimization of contrast function. More precisely, we design a novel “reference-based” contrast function based on negentropy approximations, and then propose a new family of algorithms (Alg.1 and Alg.2) to maximize it. Simulations confirm the convergence of our method to a separating solution, which is also analyzed in theory. We also validate the theoretic complexity analysis that Alg.2 has a much lower computational cost than Alg.1 and existing optimization methods based on negentropy criterion. Finally, experiments for the separation of single sideband signals illustrate that our method has good prospects in real-world applications

    Rare decays Bsl+lB_s\to l^+l^- and BKl+lB\to Kl^+l^- in \the topcolor-assisted technicolor model

    Full text link
    We examine the rare decays Bsl+lB_s\to l^+l^- and BKl+lB\to Kl^+l^- in the framework of the topcolor-assisted technicolor (TC2TC2) model. The contributions of the new particles predicted by this model to these rare decay processes are evaluated. We find that the values of their branching ratios are larger than the standard model predictions by one order of magnitude in wide range of the parameter space. The longitudinal polarization asymmetry of leptons in Bsl+lB_s \to l^+l^- can approach \ord(10^{-2}). The forward-backward asymmetry of leptons in BKl+lB \to Kl^+l^- is not large enough to be measured in future experiments. We also give some discussions about the branching ratios and the asymmetry observables related to these rare decay processes in the littlest Higgs model with T-parity.Comment: 29 pages, 9 figure, corrected typos, the version to appear in PR
    corecore