6,536 research outputs found

    The Thermal Memory of Reionization History

    Get PDF
    The recent measurement by WMAP of a large electron scattering optical depth tau_e = 0.17 +- 0.04 is consistent with a simple model of reionization in which the intergalactic medium (IGM) is ionized at redshift z ~ 15, and remains highly ionized thereafter. Here, we show that existing measurements of the IGM temperature from the Lyman-alpha forest at z ~ 2 - 4 rule out this ``vanilla'' model. Under reasonable assumptions about the ionizing spectrum, as long as the universe is reionized before z = 10, and remains highly ionized thereafter, the IGM reaches an asymptotic thermal state which is too cold compared to observations. To simultaneously satisfy the CMB and forest constraints, the reionization history must be complex: reionization begins early at z >~ 15, but there must have been significant (order unity) changes in fractions of neutral hydrogen and/or helium at 6 < z < 10, and/or singly ionized helium at 4 < z < 10. We describe a physically motivated reionization model that satisfies all current observations. We also explore the impact of a stochastic reionization history and show that a late epoch of (HeII --> HeIII) reionization induces a significant scatter in the IGM temperature, but the scatter diminishes with time quickly. Finally, we provide an analytic formula for the thermal asymptote, and discuss possible additional heating mechanisms that might evade our constraints.Comment: 10 pages, submitted to ApJ, new references, additional discussion on earlier work and partial HeII reionizatio

    High Dimensional Apollonian Networks

    Get PDF
    We propose a simple algorithm which produces high dimensional Apollonian networks with both small-world and scale-free characteristics. We derive analytical expressions for the degree distribution, the clustering coefficient and the diameter of the networks, which are determined by their dimension

    Evolving small-world networks with geographical attachment preference

    Full text link
    We introduce a minimal extended evolving model for small-world networks which is controlled by a parameter. In this model the network growth is determined by the attachment of new nodes to already existing nodes that are geographically close. We analyze several topological properties for our model both analytically and by numerical simulations. The resulting network shows some important characteristics of real-life networks such as the small-world effect and a high clustering.Comment: 11 pages, 4 figure

    Effects of localization and amplification on distribution of intensity transmitted through random media

    Get PDF
    We numerically study the statistical distribution of intensity transmitted through quasi-one dimensional random media by varying the dimensionless conductance gg and the amount of absorption or gain. Markedly non-Rayleigh distribution is found to be well fitted by the analytical formula of Nieuwenhuizen {\it et al}, Phys. Rev. Lett. {\bf 74}, 2674 (1995) with a single parameter g′g^\prime. We show that in the passive random system g′g^\prime is uniquely related to gg, while in amplifying/absorbing random media g′g^\prime also depends on gain/absorption coefficient.Comment: 4 pages, 4 figures, 1 tabl

    Automatically extracted Antarctic coastline using remotely-sensed data: an update

    Get PDF
    The temporal and spatial variability of the Antarctic coastline is a clear indicator of change in extent and mass balance of ice sheets and shelves. In this study, the Canny edge detector was utilized to automatically extract high-resolution information of the Antarctic coastline for 2005, 2010, and 2017, based on optical and microwave satellite data. In order to improve the accuracy of the extracted coastlines, we developed the Canny algorithm by automatically calculating the local low and high thresholds via the intensity histogram of each image to derive thresholds to distinguish ice sheet from water. A visual comparison between extracted coastlines and mosaics from remote sensing images shows good agreement. In addition, comparing manually extracted coastline, based on prior knowledge, the accuracy of planimetric position of automated extraction is better than two pixels of Landsat images (30 m resolution). Our study shows that the percentage of deviation (7 km2 (2005) to 1.3537 Ă— 107 km2 (2010) and 1.3657 Ă— 107 km2 (2017). We have found that the decline of the Antarctic area between 2005 and 2010 is related to the breakup of some individual ice shelves, mainly in the Antarctic Peninsula and off East Antarctica. We present a detailed analysis of the temporal and spatial change of coastline and area change for the six ice shelves that exhibited the largest change in the last decade. The largest area change (a loss of 4836 km2) occurred at the Wilkins Ice Shelf between 2005 and 2010

    INDIVIDUAL TREE AGB ESTIMATION BASED ON FRACTAL PARAMETERS AND TREE VOLUME

    Get PDF
    Forest is an important component of ecosystem. To estimate forest above-ground biomass (AGB) accurately, this paper proposed an individual tree AGB estimation method based on fractal geometry and individual tree volume. In this study, fractal parameters, such as fractal dimension and intercept were first calculated. And then, a fast tree volume estimation method based on point clouds voxelization was proposed. By combining fractal parameters, tree volume and specific wood density together, an individual tree AGB estimation method was developed. The datasets of three different tree species with harvest referenced AGB values were used for evaluating the performance of the developed model. Experimental results showed that the coefficient of determination (R2) of the developed model was 0.853. Compared with other four traditional allometric models, the proposed model performs the best no matter which accuracy indicator was adopted

    Quantum Entanglement and Teleportation in Higher Dimensional Black Hole Spacetimes

    Full text link
    We study the properties of quantum entanglement and teleportation in the background of stationary and rotating curved space-times with extra dimensions. We show that a maximally entangled Bell state in an inertial frame becomes less entangled in curved space due to the well-known Hawking-Unruh effect. The degree of entanglement is found to be degraded with increasing the extra dimensions. For a finite black hole surface gravity, the observer may choose higher frequency mode to keep high level entanglement. The fidelity of quantum teleporation is also reduced because of the Hawking-Unruh effect. We discuss the fidelity as a function of extra dimensions, mode frequency, black hole mass and black hole angular momentum parameter for both bosonic and fermionic resources.Comment: 15 pages, 10 figures,contents expande

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    A Tracker Solution for a Holographic Dark Energy Model

    Full text link
    We investigate a kind of holographic dark energy model with the future event horizon the IR cutoff and the equation of state -1. In this model, the constraint on the equation of state automatically specifies an interaction between matter and dark energy. With this interaction included, an accelerating expansion is obtained as well as the transition from deceleration to acceleration. It is found that there exists a stable tracker solution for the numerical parameter d>1d>1, and dd smaller than one will not lead to a physical solution. This model provides another possible phenomenological framework to alleviate the cosmological coincidence problem in the context of holographic dark energy. Some properties of the evolution which are relevant to cosmological parameters are also discussed.Comment: 10 pages, 3 figures; accepted for publication in Int.J.Mod.Phys.

    BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization

    Get PDF
    Bicep3 is a 550 mm-aperture refracting telescope for polarimetry of radiation in the cosmic microwave background at 95 GHz. It adopts the methodology of Bicep1, Bicep2 and the Keck Array experiments | it possesses sufficient resolution to search for signatures of the inflation-induced cosmic gravitational-wave background while utilizing a compact design for ease of construction and to facilitate the characterization and mitigation of systematics. However, Bicep3 represents a significant breakthrough in per-receiver sensitivity, with a focal plane area 5x larger than a Bicep2/Keck Array receiver and faster optics (f=1:6 vs. f=2:4). Large-aperture infrared-reflective metal-mesh filters and infrared-absorptive cold alumina filters and lenses were developed and implemented for its optics. The camera consists of 1280 dual-polarization pixels; each is a pair of orthogonal antenna arrays coupled to transition-edge sensor bolometers and read out by multiplexed SQUIDs. Upon deployment at the South Pole during the 2014-15 season, Bicep3 will have survey speed comparable to Keck Array 150 GHz (2013), and will signifcantly enhance spectral separation of primordial B-mode power from that of possible galactic dust contamination in the Bicep2 observation patch
    • …
    corecore