8,064 research outputs found

    Pairing and Vortex Lattices for Interacting Fermions in Optical Lattices with a Large Magnetic Field

    Get PDF
    We study the structure of pairing order parameter for spin-1/2 fermions with attractive interactions in a square lattice under a uniform magnetic field. Because the magnetic translation symmetry gives a unique degeneracy in the single-particle spectrum, the wave function has both zero and finite momentum components co-existing, and their relative phases are determined by a self-consistent mean-field theory. We present a microscopic calculation that can determine the vortex lattice structure in the superfluid phase for different flux densities. Phase transition from a Hofstadter insulator to a superfluid phase is also discussed.Comment: 4 pages, 3 figures, one table, published versio

    Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals

    Full text link
    We report on giant circular dichroism (CD) of a molecule inserted into a plasmonic hot spot. Naturally occurring molecules and biomolecules have typically CD signals in the UV range, whereas plasmonic nanocrystals exhibit strong plasmon resonances in the visible spectral interval. Therefore, excitations of chiral molecules and plasmon resonances are typically off-resonant. Nevertheless, we demonstrate theoretically that it is possible to create strongly-enhanced molecular CD utilizing the plasmons. This task is doubly challenging since it requires both creation and enhancement of the molecular CD in the visible region. We demonstrate this effect within the model which incorporates a chiral molecule and a plasmonic dimer. The associated mechanism of plasmonic CD comes from the Coulomb interaction which is greatly amplified in a plasmonic hot spot.Comment: Manuscript: 4+pages, 4 figures; Supplemental_Material: 10 pages, 7 figure

    Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics

    Full text link
    The effective nonlinear response of films of random composites consisting of a binary composite with nonlinear particles randomly embedded in a linear host is theoretically and numerically studied. A theoretical expression for the effective second harmonic generation susceptibility, incorporating the thickness of the film, is obtained by combining a modified effective-medium approximation with the general expression for the effective second harmonic generation susceptibility in a composite. The validity of the thoretical results is tested against results obtained by numerical simulations on random resistor networks. Numerical results are found to be well described by our theory. The result implies that the effective-medium approximation provides a convenient way for the estimation of the nonlinear response in films of random dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.

    Dimensionality Reduction in Deep Learning for Chest X-Ray Analysis of Lung Cancer

    Full text link
    Efficiency of some dimensionality reduction techniques, like lung segmentation, bone shadow exclusion, and t-distributed stochastic neighbor embedding (t-SNE) for exclusion of outliers, is estimated for analysis of chest X-ray (CXR) 2D images by deep learning approach to help radiologists identify marks of lung cancer in CXR. Training and validation of the simple convolutional neural network (CNN) was performed on the open JSRT dataset (dataset #01), the JSRT after bone shadow exclusion - BSE-JSRT (dataset #02), JSRT after lung segmentation (dataset #03), BSE-JSRT after lung segmentation (dataset #04), and segmented BSE-JSRT after exclusion of outliers by t-SNE method (dataset #05). The results demonstrate that the pre-processed dataset obtained after lung segmentation, bone shadow exclusion, and filtering out the outliers by t-SNE (dataset #05) demonstrates the highest training rate and best accuracy in comparison to the other pre-processed datasets.Comment: 6 pages, 14 figure

    The Origin of Gamma-Rays from Globular Clusters

    Get PDF
    Fermi has detected gamma-ray emission from eight globular clusters. We suggest that the gamma-ray emission from globular clusters may result from the inverse Compton scattering between relativistic electrons/positrons in the pulsar wind of MSPs in the globular clusters and background soft photons including cosmic microwave/relic photons, background star lights in the clusters, the galactic infrared photons and the galactic star lights. We show that the gamma-ray spectrum from 47 Tuc can be explained equally well by upward scattering of either the relic photons, the galactic infrared photons or the galactic star lights whereas the gamma-ray spectra from other seven globular clusters are best fitted by the upward scattering of either the galactic infrared photons or the galactic star lights. We also find that the observed gamma-ray luminosity is correlated better with the combined factor of the encounter rate and the background soft photon energy density. Therefore the inverse Compton scattering may also contribute to the observed gamma-ray emission from globular clusters detected by Fermi in addition to the standard curvature radiation process. Furthermore, we find that the emission region of high energy photons from globular cluster produced by inverse Compton scattering is substantially larger than the core of globular cluster with a radius >10pc. The diffuse radio and X-rays emitted from globular clusters can also be produced by synchrotron radiation and inverse Compton scattering respectively. We suggest that future observations including radio, X-rays, and gamma-rays with energy higher than 10 GeV and better angular resolution can provide better constraints for the models.Comment: Accepted by ApJ, Comments may send to Prof. K.S. Cheng: [email protected]
    corecore