8,394 research outputs found

    Gamma-ray emission from the globular clusters Liller 1, M80, NGC 6139, NGC 6541, NGC 6624, and NGC 6752

    Get PDF
    Globular clusters (GCs) are emerging as a new class of gamma-ray emitters, thanks to the data obtained from the Fermi Gamma-ray Space Telescope. By now, eight GCs are known to emit gamma-rays at energies >100~MeV. Based on the stellar encounter rate of the GCs, we identify potential gamma-ray emitting GCs out of all known GCs that have not been studied in details before. In this paper, we report the discovery of a number of new gamma-ray GCs: Liller 1, NGC 6624, and NGC 6752, and evidence for gamma-ray emission from M80, NGC 6139, and NGC 6541, in which gamma-rays were found within the GC tidal radius. With one of the highest metallicity among all GCs in the Milky Way, the gamma-ray luminosity of Liller 1 is found to be the highest of all known gamma-ray GCs. In addition, we confirm a previous report of significant gamma-ray emitting region next to NGC 6441. We briefly discuss the observed offset of gamma-rays from some GC cores. The increasing number of known gamma-ray GCs at distances out to ~10 kpc is important for us to understand the gamma-ray emitting mechanism and provides an alternative probe to the underlying millisecond pulsar populations of the GCs.Comment: 22 pages, 7 figures, 2 tables; ApJ, in pres

    On the low-temperature lattice thermal transport in nanowires

    Full text link
    We propose a theory of low temperature thermal transport in nano-wires in the regime where a competition between phonon and flexural modes governs the relaxation processes. Starting with the standard kinetic equations for two different types of quasiparticles we derive a general expression for the coefficient of thermal conductivity. The underlying physics of thermal conductance is completely determined by the corresponding relaxation times, which can be calculated directly for any dispersion of quasiparticles depending on the size of a system. We show that if the considered relaxation mechanism is dominant, then at small wire diameters the temperature dependence of thermal conductivity experiences a crossover from T1/2T^{1/2} to T3T^3-dependence. Quantitative analysis shows reasonable agreement with resent experimental results.Comment: 12 pages, 3 eps figure

    Identification campaign of supernova remnant candidates in the Milky Way - I: Chandra observation of G308.3-1.4

    Full text link
    ROSAT all-sky survey (RASS) data have provided another window to search for supernova remnants (SNRs). In reexamining this data archive, a list of unidentified extended X-ray objects have been suggested as promising SNR candidate. However, most of these targets have not yet been fully explored by the state-of-art X-ray observatories. For selecting a pilot target for a long-term identification campaign, we have observed the brightest candidate, G308.3-1.4, with Chandra X-ray observatory. An incomplete shell-like X-ray structure which well-correlated with the radio shell emission at 843 MHz has been revealed. The X-ray spectrum suggests the presence of a shock-heated plasma. All these evidences confirm G308.3-1.4 as a SNR. The brightest X-ray point source detected in this field-of-view is also the one locates closest to the geometrical center of G308.3-1.4, which has a soft spectrum. The intriguing temporal variability and the identification of optical/infrared counterpart rule out the possibility of an isolated neutron star. On the other hand, the spectral energy distribution from Ks band to R band suggests a late-type star. Together with a putative periodicity of \sim1.4 hrs, the interesting excesses in V, B bands and H-alpha suggest this source as a promising candidate of a compact binary survived in a supernova explosion (SN).Comment: 19 pages, 10 figures, 2 tables, accepted for publication in Ap

    The B(Bs)D(s)PB(B_s)\to D_{(s)} P, D(s)VD_{(s)} V, D(s)PD_{(s)}^{*}P and D(s)VD_{(s)}^{*}V decays in the perturbative QCD approach

    Full text link
    Two-body non-leptonic charmed decays B(s)D(s)PB_{(s)} \to D_{(s)}P, D(s)PD_{(s)}^*P, D(s)VD_{(s)}V and D(s)VD_{(s)}^*V are analyzed in perturbative QCD approach, where PP and VV denote the light pseudoscalar meson and vector meson, respectively. We test the DD meson wave function by a χ2\chi^2 fit with experimental data of six BDPB\to DP channels. We give the branching ratios of all the charmed B decay channels, most of which agree with experiments amazingly well. The predicted BsB_s decays can be confronted with the future experimental data. By straightforward calculations, our pQCD approach gives the right relative strong phase of a2/a1a_2/a_1 with experiments. We also predict the percentage of transverse polarizations in B(s)DVB_{(s)} \to D^* V decay channels.Comment: 25 pages, 4 figure

    Theory of Networked Minority Games based on Strategy Pattern Dynamics

    Full text link
    We formulate a theory of agent-based models in which agents compete to be in a winning group. The agents may be part of a network or not, and the winning group may be a minority group or not. The novel feature of the present formalism is its focus on the dynamical pattern of strategy rankings, and its careful treatment of the strategy ties which arise during the system's temporal evolution. We apply it to the Minority Game (MG) with connected populations. Expressions for the mean success rate among the agents and for the mean success rate for agents with kk neighbors are derived. We also use the theory to estimate the value of connectivity pp above which the Binary-Agent-Resource system with high resource level goes into the high-connectivity state.Comment: 24 pages, 3 figures, submitted to PR

    First-order super-radiant phase transitions in a multi-qubit--cavity system

    Full text link
    We predict the existence of novel first-order phase transitions in a general class of multi-qubit-cavity systems. Apart from atomic systems, the associated super-radiant phase transition should be observable in a variety of solid-state experimental systems, including the technologically important case of interacting quantum dots coupled to an optical cavity mode.Comment: To appear in Phys. Rev. Let

    Cosmological Limits on the Neutrino Mass from the Lya Forest

    Full text link
    The Lya forest in quasar spectra probes scales where massive neutrinos can strongly suppress the growth of mass fluctuations. Using hydrodynamic simulations with massive neutrinos, we successfully test techniques developed to measure the mass power spectrum from the forest. A recent observational measurement in conjunction with a conservative implementation of other cosmological constraints places upper limits on the neutrino mass: m_nu < 5.5 eV for all values of Omega_m, and m_nu < 2.4 (Omega_m/0.17 -1) eV, if 0.2 < Omega_m <0.5 as currently observationally favored (both 95 % C.L.).Comment: 4 pages, 2 ps figures, REVTex, submitted to Phys. Rev. Let

    Cyclic Universe with Quintom matter in Loop Quantum Cosmology

    Full text link
    In this paper, we study the possibility of model building of cyclic universe with Quintom matter in the framework of Loop Quantum Cosmology. After a general demonstration, we provide two examples, one with double-fluid and another double-scalar field, to show how such a scenario is obtained. Analytical and numerical calculations are both presented in the paper.Comment: 11 pages, 2 figure

    Electron Acceleration and the Production of Nonthermal Electron Distributions in Accretion Disk Coronae

    Full text link
    We consider electron acceleration by obliquely propagating fast mode waves in magnetically dominated accretion disk coronae. For low coronal plasma densities, acceleration can exceed Coulomb drag at lower energies and energize electrons out of the thermal background, resulting in a nonthermal tail. The extent of this tail is determined by the balance between acceleration and radiative cooling via inverse Compton scattering and synchrotron emission, and usually goes out to tens of MeV. This will have direct applications for explaining the gamma-rays from several galactic black hole candidates, such as Cyg X-1 and GRO J0422, which show 0.5--5 MeV emissions in excess over what most thermal models predict. Detailed time evolutions of the particle distributions and wave spectra are also presented.Comment: AASLaTeX, two figures, accepted for ApJ

    Group Theoretical Properties and Band Structure of the Lame Hamiltonian

    Full text link
    We study the group theoretical properties of the Lame equation and its relation to su(1,1) and su(2). We compute the band structure, dispersion relation and transfer matrix and discuss the dynamical symmetry limits.Comment: 21 pages Revtex + 6 eps + 2 jpg figure
    corecore