194 research outputs found

    Differentially Private Regression for Discrete-Time Survival Analysis

    Full text link
    In survival analysis, regression models are used to understand the effects of explanatory variables (e.g., age, sex, weight, etc.) to the survival probability. However, for sensitive survival data such as medical data, there are serious concerns about the privacy of individuals in the data set when medical data is used to fit the regression models. The closest work addressing such privacy concerns is the work on Cox regression which linearly projects the original data to a lower dimensional space. However, the weakness of this approach is that there is no formal privacy guarantee for such projection. In this work, we aim to propose solutions for the regression problem in survival analysis with the protection of differential privacy which is a golden standard of privacy protection in data privacy research. To this end, we extend the Output Perturbation and Objective Perturbation approaches which are originally proposed to protect differential privacy for the Empirical Risk Minimization (ERM) problems. In addition, we also propose a novel sampling approach based on the Markov Chain Monte Carlo (MCMC) method to practically guarantee differential privacy with better accuracy. We show that our proposed approaches achieve good accuracy as compared to the non-private results while guaranteeing differential privacy for individuals in the private data set.Comment: 19 pages, CIKM1

    Latent Relational Metric Learning via Memory-based Attention for Collaborative Ranking

    Full text link
    This paper proposes a new neural architecture for collaborative ranking with implicit feedback. Our model, LRML (\textit{Latent Relational Metric Learning}) is a novel metric learning approach for recommendation. More specifically, instead of simple push-pull mechanisms between user and item pairs, we propose to learn latent relations that describe each user item interaction. This helps to alleviate the potential geometric inflexibility of existing metric learing approaches. This enables not only better performance but also a greater extent of modeling capability, allowing our model to scale to a larger number of interactions. In order to do so, we employ a augmented memory module and learn to attend over these memory blocks to construct latent relations. The memory-based attention module is controlled by the user-item interaction, making the learned relation vector specific to each user-item pair. Hence, this can be interpreted as learning an exclusive and optimal relational translation for each user-item interaction. The proposed architecture demonstrates the state-of-the-art performance across multiple recommendation benchmarks. LRML outperforms other metric learning models by 6%7.5%6\%-7.5\% in terms of Hits@10 and nDCG@10 on large datasets such as Netflix and MovieLens20M. Moreover, qualitative studies also demonstrate evidence that our proposed model is able to infer and encode explicit sentiment, temporal and attribute information despite being only trained on implicit feedback. As such, this ascertains the ability of LRML to uncover hidden relational structure within implicit datasets.Comment: WWW 201

    Cross Temporal Recurrent Networks for Ranking Question Answer Pairs

    Full text link
    Temporal gates play a significant role in modern recurrent-based neural encoders, enabling fine-grained control over recursive compositional operations over time. In recurrent models such as the long short-term memory (LSTM), temporal gates control the amount of information retained or discarded over time, not only playing an important role in influencing the learned representations but also serving as a protection against vanishing gradients. This paper explores the idea of learning temporal gates for sequence pairs (question and answer), jointly influencing the learned representations in a pairwise manner. In our approach, temporal gates are learned via 1D convolutional layers and then subsequently cross applied across question and answer for joint learning. Empirically, we show that this conceptually simple sharing of temporal gates can lead to competitive performance across multiple benchmarks. Intuitively, what our network achieves can be interpreted as learning representations of question and answer pairs that are aware of what each other is remembering or forgetting, i.e., pairwise temporal gating. Via extensive experiments, we show that our proposed model achieves state-of-the-art performance on two community-based QA datasets and competitive performance on one factoid-based QA dataset.Comment: Accepted to AAAI201

    Learning to Attend via Word-Aspect Associative Fusion for Aspect-based Sentiment Analysis

    Full text link
    Aspect-based sentiment analysis (ABSA) tries to predict the polarity of a given document with respect to a given aspect entity. While neural network architectures have been successful in predicting the overall polarity of sentences, aspect-specific sentiment analysis still remains as an open problem. In this paper, we propose a novel method for integrating aspect information into the neural model. More specifically, we incorporate aspect information into the neural model by modeling word-aspect relationships. Our novel model, \textit{Aspect Fusion LSTM} (AF-LSTM) learns to attend based on associative relationships between sentence words and aspect which allows our model to adaptively focus on the correct words given an aspect term. This ameliorates the flaws of other state-of-the-art models that utilize naive concatenations to model word-aspect similarity. Instead, our model adopts circular convolution and circular correlation to model the similarity between aspect and words and elegantly incorporates this within a differentiable neural attention framework. Finally, our model is end-to-end differentiable and highly related to convolution-correlation (holographic like) memories. Our proposed neural model achieves state-of-the-art performance on benchmark datasets, outperforming ATAE-LSTM by 4%5%4\%-5\% on average across multiple datasets.Comment: Accepted to AAAI201

    Submodular memetic approximation for multiobjective parallel test paper generation

    Get PDF
    Parallel test paper generation is a biobjective distributed resource optimization problem, which aims to generate multiple similarly optimal test papers automatically according to multiple user-specified assessment criteria. Generating high-quality parallel test papers is challenging due to its NP-hardness in both of the collective objective functions. In this paper, we propose a submodular memetic approximation algorithm for solving this problem. The proposed algorithm is an adaptive memetic algorithm (MA), which exploits the submodular property of the collective objective functions to design greedy-based approximation algorithms for enhancing steps of the multiobjective MA. Synergizing the intensification of submodular local search mechanism with the diversification of the population-based submodular crossover operator, our algorithm can jointly optimize the total quality maximization objective and the fairness quality maximization objective. Our MA can achieve provable near-optimal solutions in a huge search space of large datasets in efficient polynomial runtime. Performance results on various datasets have shown that our algorithm has drastically outperformed the current techniques in terms of paper quality and runtime efficiency
    corecore