762 research outputs found

    Compensatory Proliferation Induced by Cell Death in the Drosophila Wing Disc Requires Activity of the Apical Cell Death Caspase Dronc in a Nonapoptotic Role

    Get PDF
    Achieving proper organ size requires a balance between proliferation and cell death. For example, at least 40%–60% of cells in the Drosophila wing disc can be lost, yet these discs go on to give rise to normal-looking adult wings as a result of compensatory proliferation 1, 2, 3. The signals that drive this proliferation are unknown. One intriguing possibility is that they derive, at least in part, from the dying cells. To explore this hypothesis, we activated cell death signaling in specific populations of cells in the developing wing but prevented these cells from dying through expression of the baculovirus p35 protein, which inhibits the activity of effector caspases that mediate apoptosis [4]. This allowed us to uncouple the activation steps of apoptosis from death itself. Here we report that stimulation of cell death signaling in the wing disc—in the absence of cell death—results in increased proliferation and ectopic expression of Wingless, a known mitogen in the wing. Activation of the apical cell death caspase Dronc is necessary and sufficient to drive both of these processes. Our results demonstrate an unanticipated function, the nonautonomous induction of proliferation, of an apical cell death caspase. This activity is likely to contribute to tissue homeostasis by promoting local compensatory proliferation in response to cell death. We speculate that dying cells may communicate cell fate or behavior instructions to their neighbors in other contexts as well

    Structure and Activation Mechanism of the Drosophila Initiator Caspase Dronc

    Get PDF
    Activation of an initiator caspase is essential to the execution of apoptosis. The molecular mechanisms by which initiator caspases are activated remain poorly understood. Here we demonstrate that the autocatalytic cleavage of Dronc, an important initiator caspase in Drosophila, results in a drastic enhancement of its catalytic activity in vitro. The autocleaved Dronc forms a homodimer, whereas the uncleaved Dronc zymogen exists exclusively as a monomer. Thus the autocatalytic cleavage in Dronc induces its stable dimerization, which presumably allows the two adjacent monomers to mutually stabilize their active sites, leading to activation. Crystal structure of a prodomain-deleted Dronc zymogen, determined at 2.5 Ă… resolution, reveals an unproductive conformation at the active site, which is consistent with the observation that the zymogen remains catalytically inactive. This study revealed insights into mechanism of Dronc activation, and in conjunction with other observations, suggests diverse mechanisms for the activation of initiator caspases

    The role of cytochrome c in caspase activation in Drosophila melanogaster cells

    Get PDF
    The release of cytochrome c from mitochondria is necessary for the formation of the Apaf-1 apoptosome and subsequent activation of caspase-9 in mammalian cells. However, the role of cytochrome c in caspase activation in Drosophila cells is not well understood. We demonstrate here that cytochrome c remains associated with mitochondria during apoptosis of Drosophila cells and that the initiator caspase DRONC and effector caspase DRICE are activated after various death stimuli without any significant release of cytochrome c in the cytosol. Ectopic expression of the proapoptotic Bcl-2 protein, DEBCL, also fails to show any cytochrome c release from mitochondria. A significant proportion of cellular DRONC and DRICE appears to localize near mitochondria, suggesting that an apoptosome may form in the vicinity of mitochondria in the absence of cytochrome c release. In vitro, DRONC was recruited to a >700-kD complex, similar to the mammalian apoptosome in cell extracts supplemented with cytochrome c and dATP. These results suggest that caspase activation in insects follows a more primitive mechanism that may be the precursor to the caspase activation pathways in mammals

    Reaper is regulated by IAP-mediated ubiquitination

    Get PDF
    In most cases, apoptotic cell death culminates in the activation of the caspase family of cysteine proteases, leading to the orderly dismantling and elimination of the cell. The IAPs (inhibitors of apoptosis) comprise a family of proteins that oppose caspases and thus act to raise the apoptotic threshold. Disruption of IAP-mediated caspase inhibition has been shown to be an important activity for pro-apoptotic proteins in Drosophila (Reaper, HID, and Grim) and in mammalian cells (Smac/DIABLO and Omi/HtrA2). In addition, in the case of the fly, these proteins are able to stimulate the ubiquitination and degradation of IAPs by a mechanism involving the ubiquitin ligase activity of the IAP itself. In this report, we show that the Drosophila RHG proteins (Reaper, HID, and Grim) are themselves substrates for IAP-mediated ubiquitination. This ubiquitination of Reaper requires IAP ubiquitin-ligase activity and a stable interaction between Reaper and the IAP. Additionally, degradation of Reaper can be blocked by mutating its potential ubiquitination sites. Most importantly, we also show that regulation of Reaper by ubiquitination is a significant factor in determining its biological activity. These data demonstrate a novel function for IAPs and suggest that IAPs and Reaper-like proteins mutually control each other's abundance

    The Drosophila Inhibitor of Apoptosis (IAP) DIAP2 Is Dispensable for Cell Survival, Required for the Innate Immune Response to Gram-negative Bacterial Infection, and Can Be Negatively Regulated by the Reaper/Hid/Grim Family of IAP-binding Apoptosis Inducers

    Get PDF
    Many inhibitor of apoptosis (IAP) family proteins inhibit apoptosis. IAPs contain N-terminal baculovirus IAP repeat domains and a C-terminal RING ubiquitin ligase domain. Drosophila IAP DIAP1 is essential for the survival of many cells, protecting them from apoptosis by inhibiting active caspases. Apoptosis initiates when proteins such as Reaper, Hid, and Grim bind a surface groove in DIAP1 baculovirus IAP repeat domains via an N-terminal IAP-binding motif. This evolutionarily conserved interaction disrupts DIAP1-caspase interactions, unleashing apoptosis-inducing caspase activity. A second Drosophila IAP, DIAP2, also binds Rpr and Hid and inhibits apoptosis in multiple contexts when overexpressed. However, due to a lack of mutants, little is known about the normal functions of DIAP2. We report the generation of diap2 null mutants. These flies are viable and show no defects in developmental or stress-induced apoptosis. Instead, DIAP2 is required for the innate immune response to Gram-negative bacterial infection. DIAP2 promotes cytoplasmic cleavage and nuclear translocation of the NF-{kappa}B homolog Relish, and this requires the DIAP2 RING domain. Increasing the genetic dose of diap2 results in an increased immune response, whereas expression of Rpr or Hid results in down-regulation of DIAP2 protein levels. Together these observations suggest that DIAP2 can regulate immune signaling in a dose-dependent manner, and this can be regulated by IBM-containing proteins. Therefore, diap2 may identify a point of convergence between apoptosis and immune signaling pathways

    The Drosophila caspase Ice is important for many apoptotic cell deaths and for spermatid individualization, a nonapoptotic process

    Get PDF
    Caspase family proteases play important roles in the regulation of apoptotic cell death. Initiator caspases are activated in response to death stimuli, and they transduce and amplify these signals by cleaving and thereby activating effector caspases. In Drosophila, the initiator caspase Nc (previously Dronc) cleaves and activates two short-prodomain caspases, Dcp-1 and Ice (previously Drice), suggesting these as candidate effectors of Nc killing activity. dcp-1-null mutants are healthy and possess few defects in normally occurring cell death. To explore roles for Ice in cell death, we generated and characterized an Ice null mutant. Animals lacking Ice show a number of defects in cell death, including those that occur during embryonic development, as well as during formation of adult eyes, arista and wings. Ice mutants exhibit subtle defects in the destruction of larval tissues, and do not prevent destruction of salivary glands during metamorphosis. Cells from Ice animals are also markedly resistant to several stresses, including X-irradiation and inhibition of protein synthesis. Mutations in Ice also suppress cell death that is induced by expression of Rpr, Wrinkled (previously Hid) and Grim. These observations demonstrate that Ice plays an important non-redundant role as a cell death effector. Finally, we demonstrate that Ice participates in, but is not absolutely required for, the non-apoptotic process of spermatid differentiation

    Lung eosinophils elicited during allergic and acute aspergillosis express RORgammat and IL-23R but do not require IL-23 for IL-17 production

    Get PDF
    Exposure to the mold, Aspergillus, is ubiquitous and generally has no adverse consequences in immunocompetent persons. However, invasive and allergic aspergillosis can develop in immunocompromised and atopic individuals, respectively. Previously, we demonstrated that mouse lung eosinophils produce IL-17 in response to stimulation by live conidia and antigens of A. fumigatus. Here, we utilized murine models of allergic and acute pulmonary aspergillosis to determine the association of IL-23, IL-23R and RORgammat with eosinophil IL-17 expression. Following A. fumigatus stimulation, a population of lung eosinophils expressed RORgammat, the master transcription factor for IL-17 regulation. Eosinophil RORgammat expression was demonstrated by flow cytometry, confocal microscopy, western blotting and an mCherry reporter mouse. Both nuclear and cytoplasmic localization of RORgammat in eosinophils were observed, although the former predominated. A population of lung eosinophils also expressed IL-23R. While expression of IL-23R was positively correlated with expression of RORgammat, expression of RORgammat and IL-17 was similar when comparing lung eosinophils from A. fumigatus-challenged wild-type and IL-23p19-/- mice. Thus, in allergic and acute models of pulmonary aspergillosis, lung eosinophils express IL-17, RORgammat and IL-23R. However, IL-23 is dispensable for production of IL-17 and RORgammat

    Emergence of the erythroid lineage from multipotent hematopoiesis [preprint]

    Get PDF
    Red cell formation begins with the hematopoietic stem cell, but the manner by which it gives rise to erythroid progenitors, and their subsequent developmental path, remain unclear. Here we combined single-cell transcriptomics of murine hematopoietic tissues with fate potential assays to infer a continuous yet hierarchical structure for the hematopoietic network. We define the erythroid differentiation trajectory as it emerges from multipotency and diverges from 6 other blood lineages. With the aid of a new flow-cytometric sorting strategy, we validated predicted cell fate potentials at the single cell level, revealing a coupling between erythroid and basophil/mast cell fates. We uncovered novel growth factor receptor regulators of the erythroid trajectory, including the proinflammatory IL- 17RA, found to be a strong erythroid stimulator; and identified a global hematopoietic response to stress erythropoiesis. We further identified transcriptional and high-purity FACS gates for the complete isolation of all classically-defined erythroid burst-forming (BFU-e) and colony-forming progenitors (CFU-e), finding that they express a dedicated transcriptional program, distinct from that of terminally-differentiating erythroblasts. Intriguingly, profound remodeling of the cell cycle is intimately entwined with CFU-e developmental progression and with a sharp transcriptional switch that extinguishes the CFU-e stage and activates terminal differentiation. Underlying these results, our work showcases the utility of theoretic approaches linking transcriptomic data to predictive fate models, providing key insights into lineage development in vivo

    Central Role of IL-23 and IL-17 Producing Eosinophils as Immunomodulatory Effector Cells in Acute Pulmonary Aspergillosis and Allergic Asthma

    Get PDF
    Aspergillus fumigatus causes invasive pulmonary disease in immunocompromised hosts and allergic asthma in atopic individuals. We studied the contribution of lung eosinophils to these fungal diseases. By in vivo intracellular cytokine staining and confocal microscopy, we observed that eosinophils act as local sources of IL-23 and IL-17. Remarkably, mice lacking eosinophils had a \u3e95% reduction in the percentage of lung IL-23p19+ cells as well as markedly reduced IL-23 heterodimer in lung lavage fluid. Eosinophils killed A. fumigatus conidia in vivo. Eosinopenic mice had higher mortality rates, decreased recruitment of inflammatory monocytes, and decreased expansion of lung macrophages after challenge with conidia. All of these functions underscore a potential protective role for eosinophils in acute aspergillosis. Given the postulated role for IL-17 in asthma pathogenesis, we assessed whether eosinophils could act as sources of IL-23 and IL-17 in models where mice were sensitized to either A. fumigatus antigens or ovalbumin (OVA). We found IL-23p19+ IL-17AF+ eosinophils in both allergic models. Moreover, close to 95% of IL-23p19+ cells and \u3e90% of IL-17AF+ cells were identified as eosinophils. These data establish a new paradigm in acute and allergic aspergillosis whereby eosinophils act not only as effector cells but also as immunomodulatory cells driving the IL-23/IL-17 axis and contributing to inflammatory cell recruitment
    • …
    corecore