43,701 research outputs found

    Orbital evolution of a test particle around a black hole: higher-order corrections

    Get PDF
    We study the orbital evolution of a radiation-damped binary in the extreme mass ratio limit, and the resulting waveforms, to one order beyond what can be obtained using the conservation laws approach. The equations of motion are solved perturbatively in the mass ratio (or the corresponding parameter in the scalar field toy model), using the self force, for quasi-circular orbits around a Schwarzschild black hole. This approach is applied for the scalar model. Higher-order corrections yield a phase shift which, if included, may make gravitational-wave astronomy potentially highly accurate.Comment: 4 pages, 3 Encapsulated PostScript figure

    Recent integral cross section validation measurements at the ASP facility

    Get PDF
    This work presents new integral data measured at the ASP 14 MeV neutron irradiation facility at Aldermaston in the UK, which has recently become available for fusion-related work through the CCFE materials programme. Measurements of reaction products from activation experiments using elemental foils were carried out using gamma spectrometry in a high efficiency, high-purity germanium (HPGe) detector and associated digital signal processing hardware. Following irradiation and rapid extraction to the measurement cell, gamma emissions were acquired with both energy and time bins. Integral cross section and half-life data have been derived from these measurements. Selected integral cross section values are presented from the measurement campaigns.Comment: 4 pages, 5 figure

    AGAPEROS: Searching for variable stars in the LMC Bar with the Pixel Method. I. Detection, astrometry and cross-identification

    Get PDF
    We extend the work developed in previous papers on microlensing with a selection of variable stars. We use the Pixel Method to select variable stars on a set of 2.5 x 10**6 pixel light curves in the LMC Bar presented elsewhere. The previous treatment was done in order to optimise the detection of long timescale variations (larger than a few days) and we further optimise our analysis for the selection of Long Timescale and Long Period Variables (LT&LPV). We choose to perform a selection of variable objects as comprehensive as possible, independent of periodicity and of their position on the colour magnitude diagram. We detail the different thresholds successively applied to the light curves, which allow to produce a catalogue of 632 variable objects. We present a table with the coordinate of each variable, its EROS magnitudes at one epoch and an indicator of blending in both colours, together with a finding chart. A cross-correlation with various catalogues shows that 90% of those variable objects were undetected before, thus enlarging the sample of LT&LPV previously known in this area by a factor of 10. Due to the limitations of both the Pixel Method and the data set, additional data -- namely a longer baseline and near infrared photometry -- are required to further characterise these variable stars, as will be addressed in subsequent papers.Comment: 11 pages with 10 figure

    Meteoroid detector

    Get PDF
    A meteoroid detector is described which uses, a cold cathode discharge tube with a gas-pressurized cell in space for recording a meteoroid puncture of the cell and for determining the size of the puncture

    Implementing fully relativistic hydrodynamics in three dimensions

    Get PDF
    We report on our numerical implementation of fully relativistic hydrodynamics coupled to Einstein's field equations in three spatial dimensions. We briefly review several steps in our code development, including our recasting of Einstein's equations and several tests which demonstrate its advantages for numerical integrations. We outline our implementation of relativistic hydrodynamics, and present numerical results for the evolution of both stable and unstable Oppenheimer-Volkov equilibrium stars, which represent a very promising first test of our code.Comment: 5 Pages, 4 Figures, submitted to Proceedings of the 8th Canadian Conference on General Relativity and Relativistic Astrophysic

    Global symmetries of Yang-Mills squared in various dimensions

    Get PDF
    Tensoring two on-shell super Yang-Mills multiplets in dimensions D10D\leq 10 yields an on-shell supergravity multiplet, possibly with additional matter multiplets. Associating a (direct sum of) division algebra(s) D\mathbb{D} with each dimension 3D103\leq D\leq 10 we obtain formulae for the algebras g\mathfrak{g} and h\mathfrak{h} of the U-duality group GG and its maximal compact subgroup HH, respectively, in terms of the internal global symmetry algebras of each super Yang-Mills theory. We extend our analysis to include supergravities coupled to an arbitrary number of matter multiplets by allowing for non-supersymmetric multiplets in the tensor product.Comment: 25 pages, 2 figures, references added, minor typos corrected, further comments on sec. 2.4 included, updated to match version to appear in JHE

    An octonionic formulation of the M-theory algebra

    Full text link
    We give an octonionic formulation of the N = 1 supersymmetry algebra in D = 11, including all brane charges. We write this in terms of a novel outer product, which takes a pair of elements of the division algebra A and returns a real linear operator on A. More generally, with this product comes the power to rewrite any linear operation on R^n (n = 1,2,4,8) in terms of multiplication in the n-dimensional division algebra A. Finally, we consider the reinterpretation of the D = 11 supersymmetry algebra as an octonionic algebra in D = 4 and the truncation to division subalgebras

    A magic pyramid of supergravities

    Get PDF
    By formulating N = 1, 2, 4, 8, D = 3, Yang-Mills with a single Lagrangian and single set of transformation rules, but with fields valued respectively in R,C,H,O, it was recently shown that tensoring left and right multiplets yields a Freudenthal-Rosenfeld-Tits magic square of D = 3 supergravities. This was subsequently tied in with the more familiar R,C,H,O description of spacetime to give a unified division-algebraic description of extended super Yang-Mills in D = 3, 4, 6, 10. Here, these constructions are brought together resulting in a magic pyramid of supergravities. The base of the pyramid in D = 3 is the known 4x4 magic square, while the higher levels are comprised of a 3x3 square in D = 4, a 2x2 square in D = 6 and Type II supergravity at the apex in D = 10. The corresponding U-duality groups are given by a new algebraic structure, the magic pyramid formula, which may be regarded as being defined over three division algebras, one for spacetime and each of the left/right Yang-Mills multiplets. We also construct a conformal magic pyramid by tensoring conformal supermultiplets in D = 3, 4, 6. The missing entry in D = 10 is suggestive of an exotic theory with G/H duality structure F4(4)/Sp(3) x Sp(1).Comment: 30 pages, 6 figures. Updated to match published version. References and comments adde
    corecore