1,823 research outputs found

    Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    Get PDF
    [1] To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5–8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere

    Cottonwood Creek Preliminary Assessment

    Get PDF
    Cottonwood Creek is located in Powell County, Montana and flows through the town of Deer Lodge. The Natural Resource Conservation Service (NRCS), will be working with ranch owners along Cottonwood Creek on restoration and conservation projects in the spring of 2001. In September and October of 2000, six graduate students from the University of Montana completed a baseline assessment of the lower Cottonwood Creek watershed, including the tributary Reese Anderson Creek. The assessment is the start of a more comprehensive assessment to be completed in the summer of 2001. The purpose of this baseline assessment is to characterize the current condition of Cottonwood Creek. The objectives of this study include: 1. To assess the current condition (“health”) of Cottonwood Creek’s riparian areas. 2. To provide baseline data needed to evaluate the benefits of conservation and restoration projects. 3. To gather information about the current and historical land-uses in the Cottonwood Creek Watershed. 4. To make recommendations on a landowner monitoring system. Study Approach The Fall 200 study synthesized existing data and conducted new field observations. Existing data includes maps, soil information, geology, climate, and historically and current land uses. The major component of the field research was the evaluation of the riparian corridor using University of Montana’s Riparian and Wetland Research Program’s (RWRP) Lotic Assessment Form. This method breaks up the riparian corridor into about ¼ mile to ¾ mile sections, called polygons, and evaluates each polygon’s vegetation, stream bank stability, and invasive species. Each polygon is then rated as “Properly Functioning”, “Functioning but at Risk”, or “Nonfunctioning”. Other field data collected included measurement of the stream cross section, photo documentation of the riparian area, and stream discharge. Summary of results The Fall 2000 assessment broke Cottonwood Creek into 11 polygons and Reese Anderson Creek into 4 polygons. The RWRP Lotic Health Assessment scored five polygons as Functioning but at Risk, and the remaining ten polygons, including all 4 on Reese Anderson Creek, were found to be Non-Functioning systems. A big factor in reduced functioning along Cottonwood Creek is over grazing which resulted in a streambank instability and lack of woody vegetation. This is most evident on Reese Anderson Creek and the downstream portion of Cottonwood Creek. Other concerns in the riparian corridor included dewatering, use of rip-rap and invasive species. Comparing the cross sections measurements made in each polygon showed a widening trend downstream. A likely cause for this trend is the lack of woody vegetation along the stream bank downstream. Also, the limited discharged data collected suggested that the stream loses water as it flows downstream. This is likely because of the amount of diversions along the stream. However, further measurements need to be taken in the spring of 2001 to gain a better understanding of how much of a loss there is

    A GC-MS Method for the Determination of Isoxsuprine in Biological Fluids of the Horse Utilizing Electron Impact Ionization

    Get PDF
    Isoxsuprine is used to treat navicular disease and other lower-limb problems in the horse. Isoxsuprine is regulated as a class 4 compound by the Association of Racing Commissioners, International (ARCI) and, thus, requires regulatory monitoring. A gas chromatography-mass spectrometry method utilizing electron impact ionization was developed and validated for the quantitation of isoxsuprine in equine plasma or equine urine. The method utilized robotic solid-phase extraction and tri-methyl silyl ether products of derivatization. Products were bis-trimethylsilyl (TMS) isoxsuprine and tris-TMS ritodrine, which released intense quantifier ions m/z 178 for isoxsuprine and m/z 236 for ritodrine that were products of C-C cleavage. To our knowledge, this procedure is faster and more sensitive than other methods in the literature. Concentrations in urine and plasma of isoxsuprine were determined from a calibrator curve that was generated along with unknowns. Ritodrine was used as an internal standard and was, therefore, present in all samples, standards, and blanks. Validation data was also collected. The limit of detection of isoxsuprine in plasma was determined to be 2 ng/mL, the limit of quantitation of isoxsuprine in plasma was determined to be \u3c 5 ng/mL. The mean coefficient of determination for the calibrator curves for plasma was 0.9925 ± 0.0052 and for calibrator curves for urine 0.9904 ± 0.0075. The recovery efficiencies at concentrations of 50, 200, and 300 ng/mL were 76%, 73%, and 76%, respectively, in plasma and 92%, 89% and 91% in urine

    Development of a method for the detection and confirmation of the alpha-2 agonist amitraz and its major metabolite in horse urine

    Get PDF
    Amitraz (N′-(2,4-dimethylphenyl)-N-[[(2,4-dimethylphenyl)imino] methyl]-N-methyl-methanimidamide) is an alpha-2 adrenergic agonist used in veterinary medicine primarily as a scabicide- or acaricide-type insecticide. As an alpha-2 adrenergic agonist, it also has sedative/tranquilizing properties and is, therefore, listed as an Association of Racing Commissioners International Class 3 Foreign Substance, indicating its potential to influence the outcome of horse races. We identified the principal equine metabolite of amitraz as N-2,4-dimethylphenyl-N′-methylformamidine by electrospray ionization(+)-mass spectrometry and developed a gas chromatographic-mass spectrometric (GC-MS) method for its detection, quantitation, and confirmation in performance horse regulation. The GC-MS method involves derivatization with t-butyldimethylsilyl groups; selected ion monitoring (SIM) of m/z 205 (quantifier ion), 278, 261, and 219 (qualifier ions); and elaboration of a calibration curve based on ion area ratios involving simultaneous SIM acquisition of an internal standard m/z 208 quantifier ion based on an in-house synthesized d6 deuterated metabolite. The limit of detection of the method is approximately 5 ng/mL in urine and is sufficiently sensitive to detect the peak urinary metabolite at 1 h post dose, following administration of amitraz at a 75-mg/horse intraveneous dose

    Detection and Confirmation of Ractopamine and Its Metabolites in Horse Urine after Paylean® Administration

    Get PDF
    We have investigated the detection, confirmation, and metabolism of the beta-adrenergic agonist ractopamine administered as Paylean to the horse. A Testing Components Corporation enzyme-linked imunosorbent assay (ELISA) kit for ractopamine displayed linear response between 1.0 and 100 ng/ml, with an 1-50 of 10 ng/ml, and an effective screening limit of detection of 50 ng/mL. The kit was readily able to detect ractopamine equivalents in unhydrolyzed urine up to 24 h following a 300-mg oral dose. Gas chromatography-mass spectrometry (GC-MS) confirmation comprised glucuronidase treatment, solid-phase extraction, and trimethylsilyl derivatization, with selected-ion monitoring of ractopamine-tris(trimethylsilane) (TMS) m/z 267, 250, 179, and 502 ions. Quantitation was elaborated in comparison to a 445 Mw isoxsuprine-bis(TMS) internal standard monitored simultaneously. The instrumental limit of detection, defined as that number of ng on column for which signal-to-noise ratios for one or more diagnostic ions fell below a value of three, was 0.1 ng, corresponding to roughly 5 ng/mL in matrix. Based on the quantitation ions for ractopamine standards extracted from urine, standard curves showed a linear response for ractopamine concentrations between 10 and 100 ng/mL with a correlation coefficient r \u3e 0.99, whereas standards in the concentration range of 10-1000 ng/mL were fit to a second-order regression curve with r \u3e 0.99. The lower limit of detection for ractopamine in urine, defined as the lowest concentration at which the identity of ractopamine could be confirmed by comparison of diagnostic MS ion ratios, ranged between 25 and 50 ng/mL. Urine concentration of parent ractopamine 24 h post-dose was measured at 360 ng/mL by GC-MS after oral administration of 300 mg. Urinary metabolites were identified by electrospray ionization (+) tandem quadrupole mass spectrometry and were shown to include glucuronide, methyl, and mixed methyl-glucuronide conjugates. We also considered the possibility that an unusual conjugate added 113 amu to give an observed m/z 415 [M+H] species or two times 113 amu to give an m/z 528 [M+H] species with a daughter ion mass spectrum related to the previous one. Sulfate and mixed methyl-sulfate conjugates were revealed following glucuronidase treatment, suggesting that sulfation occurs in combination with glucuronidation. We noted a paired chromatographic peak phenomenon of apparent ractopamine metabolites appearing as doublets of equivalent intensity with nearly identical mass spectra on GC-MS and concluded that this phenomenon is consistent with Paylean being a mixture of RR, RS, SR, and SS diastereomers of ractopamine. The results suggest that ELISA-based screening followed by glucuronide hydrolysis, parent drug recovery, and TMS derivatization provide an effective pathway for detection and GC-MS confirmation of ractopamine in equine urine

    The Asymmetric Merger of Black Holes

    Get PDF
    We study event horizons of non-axisymmetric black holes and show how features found in axisymmetric studies of colliding black holes and of toroidal black holes are non-generic and how new features emerge. Most of the details of black hole formation and black hole merger are known only in the axisymmetric case, in which numerical evolution has successfully produced dynamical space-times. The work that is presented here uses a new approach to construct the geometry of the event horizon, not by locating it in a given spacetime, but by direct construction. In the axisymmetric case, our method produces the familiar pair-of-pants structure found in previous numerical simulations of black hole mergers, as well as event horizons that go through a toroidal epoch as discovered in the collapse of rotating matter. The main purpose of this paper is to show how new - substantially different - features emerge in the non-axisymmetric case. In particular, we show how black holes generically go through a toroidal phase before they become spherical, and how this fits together with the merger of black holes.Comment: 28 pages, 10 figures, uses REVTEX. Improved quality figures and additional color images are provided at http://www.phyast.pitt.edu/~shusa/EH

    Exact Solutions for the Intrinsic Geometry of Black Hole Coalescence

    Get PDF
    We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.Comment: 21 pages, 6 figures, revtex, to appear in Phys. Rev.

    Polymyalgia Rheumatica (PMR) Special Interest Group at OMERACT 11: outcomes of importance for patients with PMR

    Get PDF
    We worked toward developing a core outcome set for clinical research studies in polymyalgia rheumatica (PMR) by conducting (1) patient consultations using modified nominal group technique; (2) a systematic literature review of outcome measures in PMR; (3) a pilot observational study of patients presenting with untreated PMR, and further discussion with patient research partners; and (4) a qualitative focus group study of patients with PMR on the meaning of stiffness, using thematic analysis. (1) Consultations included 104 patients at 4 centers. Symptoms of PMR included pain, stiffness, fatigue, and sleep disturbance. Function, anxiety, and depression were also often mentioned. Participants expressed concerns about diagnostic delay, adverse effects of glucocorticoids, and fear of relapse. (2) In the systematic review, outcome measures previously used for PMR include pain visual analog scores (VAS), morning stiffness, blood markers, function, and quality of life; standardized effect sizes posttreatment were large. (3) Findings from the observational study indicated that asking about symptom severity at 7 AM, or "on waking," appeared more relevant to disease activity than asking about symptom severity "now" (which depended on the time of assessment). (4) Preliminary results were presented from the focus group qualitative study, encompassing broad themes of stiffness, pain, and the effect of PMR on patients' lives. It was concluded that further validation work is required before a core outcome set in PMR can be recommended. Nevertheless, the large standardized effect sizes suggest that pain VAS is likely to be satisfactory as a primary outcome measure for assessing response to initial therapy of PMR. Dissection of between-patient heterogeneity in the subsequent treatment course may require attention to comorbidity as a potential confounding factor
    • …
    corecore