2,267 research outputs found

    'Validation' in genome-scale research

    Get PDF
    The individual 'validation' experiments typically included in papers reporting genome-scale studies often do not reflect the overall merits of the work

    Dramatic changes in transcription factor binding over evolutionary time

    Get PDF
    A recent study reveals a surprisingly high degree of change in the occupancy patterns of two transcription factors in the livers of five vertebrates

    A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription

    Get PDF
    BACKGROUND: Systematic identification and functional characterization of novel types of noncoding (nc)RNA in genomes is more difficult than it is for protein coding mRNAs, since ncRNAs typically do not possess sequence features such as splicing or translation signals, or long open reading frames. Recent "tiling" microarray studies have reported that a surprisingly larger proportion of mammalian genomes is transcribed than was previously anticipated. However, these non-genic transcripts often appear to be low in abundance, and their functional significance is not known. RESULTS: To systematically search for functional ncRNAs, we designed microarrays to detect 3,478 intergenic and intronic sequences that are conserved between the human, mouse, and rat genomes, and that score highly by other criteria that characterize ncRNAs. We probed these arrays with total RNA isolated from 16 wild-type mouse tissues. Among 55 candidates for highly-expressed novel ncRNAs tested by northern blotting, eight were confirmed as small, highly-and ubiquitously-expressed RNAs in mouse. Of the eight, five were also detected in rat tissues, but none were detected at appreciable levels in human tissues or cultured cells. CONCLUSION: Since the sequence and expression of most known coding transcripts and functional ncRNAs is conserved between human and mouse, the lack of northern-detectable expression in human cells and tissues of the novel mouse and rat ncRNAs that we identified suggests that they are not functional or possibly have rodent-specific functions. Our results confirm that relatively little of the intergenic sequence conserved between human, mouse and rat is transcribed at high levels in mammalian tissues, possibly suggesting a limited role for transcribed intergenic and intronic sequences as independent functional elements

    Considerations in the identification of functional RNA structural elements in genomic alignments

    Get PDF
    BACKGROUND: Accurate identification of novel, functional noncoding (nc) RNA features in genome sequence has proven more difficult than for exons. Current algorithms identify and score potential RNA secondary structures on the basis of thermodynamic stability, conservation, and/or covariance in sequence alignments. Neither the algorithms nor the information gained from the individual inputs have been independently assessed. Furthermore, due to issues in modelling background signal, it has been difficult to gauge the precision of these algorithms on a genomic scale, in which even a seemingly small false-positive rate can result in a vast excess of false discoveries. RESULTS: We developed a shuffling algorithm, shuffle-pair.pl, that simultaneously preserves dinucleotide frequency, gaps, and local conservation in pairwise sequence alignments. We used shuffle-pair.pl to assess precision and recall of six ncRNA search tools (MSARI, QRNA, ddbRNA, RNAz, Evofold, and several variants of simple thermodynamic stability on a test set of 3046 alignments of known ncRNAs. Relative to mononucleotide shuffling, preservation of dinucleotide content in shuffling the alignments resulted in a drastic increase in estimated false-positive detection rates for ncRNA elements, precluding evaluation of higher order alignments, which cannot not be adequately shuffled maintaining both dinucleotides and alignment structure. On pairwise alignments, none of the covariance-based tools performed markedly better than thermodynamic scoring alone. Although the high false-positive rates call into question the veracity of any individual predicted secondary structural element in our analysis, we nevertheless identified intriguing global trends in human genome alignments. The distribution of ncRNA prediction scores in 75-base windows overlapping UTRs, introns, and intergenic regions analyzed using both thermodynamic stability and EvoFold (which has no thermodynamic component) was significantly higher for real than shuffled sequence, while the distribution for coding sequences was lower than that of corresponding shuffles. CONCLUSION: Accurate prediction of novel RNA structural elements in genome sequence remains a difficult problem, and development of an appropriate negative-control strategy for multiple alignments is an important practical challenge. Nonetheless, the general trends we observed for the distributions of predicted ncRNAs across genomic features are biologically meaningful, supporting the presence of secondary structural elements in many 3' UTRs, and providing evidence for evolutionary selection against secondary structures in coding regions

    Global analysis of yeast RNA processing identifies new targets of RNase III and uncovers a link between tRNA 5′ end processing and tRNA splicing

    Get PDF
    We used a microarray containing probes that tile all known yeast noncoding RNAs (ncRNAs) to investigate RNA biogenesis on a global scale. The microarray verified a general loss of Box C/D snoRNAs in the TetO(7)-BCD1 mutant, which had previously been shown for only a handful of snoRNAs. We also monitored the accumulation of improperly processed flank sequences of pre-RNAs in strains depleted for known RNA nucleases, including RNase III, Dbr1p, Xrn1p, Rat1p and components of the exosome and RNase P complexes. Among the hundreds of aberrant RNA processing events detected, two novel substrates of Rnt1p (the RUF1 and RUF3 snoRNAs) were identified. We also identified a relationship between tRNA 5′ end processing and tRNA splicing, processes that were previously thought to be independent. This analysis demonstrates the applicability of microarray technology to the study of global analysis of ncRNA synthesis and provides an extensive directory of processing events mediated by yeast ncRNA processing enzymes

    FunSpec: a web-based cluster interpreter for yeast

    Get PDF
    BACKGROUND: For effective exposition of biological information, especially with regard to analysis of large-scale data types, researchers need immediate access to multiple categorical knowledge bases and need summary information presented to them on collections of genes, as opposed to the typical one gene at a time. RESULTS: We present here a web-based tool (FunSpec) for statistical evaluation of groups of genes and proteins (e.g. co-regulated genes, protein complexes, genetic interactors) with respect to existing annotations (e.g. functional roles, biochemical properties, localization). FunSpec is available online at http://funspec.med.utoronto.ca CONCLUSION: FunSpec is helpful for interpretation of any data type that generates groups of related genes and proteins, such as gene expression clustering and protein complexes, and is useful for predictive methods employing "guilt-by-association.

    Testing of a Microwave Blade Tip Clearance Sensor at the NASA Glenn Research Center

    Get PDF
    The development of new active tip clearance control and structural health monitoring schemes in turbine engines and other types of rotating machinery requires sensors that are highly accurate and can operate in a high temperature environment. The use of a microwave sensor to acquire blade tip clearance and tip timing measurements is being explored at the NASA Glenn Research Center. The microwave blade tip clearance sensor works on principles that are very similar to a short range radar system. The sensor sends a continuous microwave signal towards a target and measures the reflected signal. The phase difference of the reflected signal is directly proportional to the distance between the sensor and the target being measured. This type of sensor is beneficial in that it has the ability to operate at extremely high temperatures and is unaffected by contaminants that may be present in turbine engines. The use of microwave sensors for this application is a new concept. Techniques on calibrating the sensors along with installation effects are not well quantified as they are for other sensor technologies. Developing calibration techniques and evaluating installation effects are essential in using these sensors to make tip clearance and tip timing measurements. As a means of better understanding these issues, the microwave sensors were used on a bench top calibration rig, a large axial vane fan, and a turbofan. Background on the microwave tip clearance sensor, an overview of their calibration, and the results from their use on the axial vane fan and the turbofan will be presented in this paper

    Absence of CD59 in guinea pigs: Analysis of the Cavia porcellus genome suggests the evolution of a CD59 pseudogene

    Get PDF
    CD59 is a membrane-bound regulatory protein that inhibits the assembly of the terminal membrane attack complex (C5b-9) of complement. From its original discovery in humans almost 30 years ago, CD59 has been characterized in a variety of species, from primates to early vertebrates, such as teleost fish. CD59 is ubiquitous in mammals; however, we have described circumstantial evidence suggesting that guinea pigs (Cavia porcellus) lack CD59, at least on erythrocytes. In this study, we have used a combination of phylogenetic analyses with syntenic alignment of mammalian CD59 genes to identify the only span of genomic DNA in C. porcellus that is homologous to a portion of mammalian CD59 and show that this segment of DNA is not transcribed. We describe a pseudogene sharing homology to exons 2 through 5 of human CD59 present in the C. porcellus genome. This pseudogene was flanked by C. porcellus homologs of two genes, FBXO3 and ORF91, a relationship and orientation that were consistent with other known mammalian CD59 genes. Analysis using RNA sequencing confirmed that this segment of chromosomal DNA was not transcribed. We conclude that guinea pigs lack an intact gene encoding CD59; to our knowledge, this is the first report of a mammalian species that does not express a functional CD59. The pseudogene we describe is likely the product of a genomic deletion event during its evolutionary divergence from other members of the rodent order
    • …
    corecore