3,756 research outputs found

    Overlapping functionality of the Pht proteins in zinc homeostasis of streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is a globally significant pathogen that causes a range of diseases, including pneumonia, sepsis, meningitis, and otitis media. Its ability to cause disease depends upon the acquisition of nutrients from its environment, including transition metal ions such as zinc. The pneumococcus employs a number of surface proteins to achieve this, among which are four highly similar polyhistidine triad (Pht) proteins. It has previously been established that these proteins collectively aid in the delivery of zinc to the ABC transporter substrate-binding protein AdcAII. Here we have investigated the contribution of each individual Pht protein to pneumococcal zinc homeostasis by analyzing mutant strains expressing only one of the four pht genes. Under conditions of low zinc availability, each of these mutants showed superior growth and zinc accumulation profiles relative to a mutant strain lacking all four genes, indicating that any of the four Pht proteins are able to facilitate delivery of zinc to AdcAII. However, optimal growth and zinc accumulation in vitro and pneumococcal survival and proliferation in vivo required production of all four Pht proteins, indicating that, despite their overlapping functionality, the proteins are not dispensable without incurring a fitness cost. We also show that surface-attached forms of the Pht proteins are required for zinc recruitment and that they do not contribute to defense against extracellular zinc stress

    The first histidine triad motif of phtd is critical for zinc homeostasis in Streptococcus pneumoniae

    Get PDF
    Streptococcus pneumoniae is the world's foremost human pathogen. Acquisition of the first row transition metal ion zinc is essential for pneumococcal colonization and disease. Zinc is acquired via the ATP-binding cassette transporter AdcCB and two zinc-binding proteins, AdcA and AdcAII. We have previously shown that AdcAII is reliant upon the polyhistidine triad (Pht) proteins to aid in zinc recruitment. Pht proteins generally contain five histidine (His) triad motifs that are believed to facilitate zinc binding and therefore play a significant role in pneumococcal metal ion homeostasis. However, the importance and potential redundancy of these motifs have not been addressed. We examined the effects of mutating each of the five His triad motifs of PhtD. The combination of in vitro growth assays, active zinc uptake, and PhtD expression studies show that the His triad closest to the protein's amino terminus is the most important for zinc acquisition. Intriguingly, in vivo competitive infection studies investigating the amino- and carboxyl-terminal His triad mutants indicate that the motifs have similar importance in colonization. Collectively, our new insights into the contributions of the individual His triad motifs of PhtD, and by extension the other Pht proteins, highlight the crucial role of the first His triad site in zinc acquisition. This study also suggests that the Pht proteins likely play a role beyond zinc acquisition in pneumococcal virulence

    Long distance decoy state quantum key distribution in optical fiber

    Full text link
    The theoretical existence of photon-number-splitting attacks creates a security loophole for most quantum key distribution (QKD) demonstrations that use a highly attenuated laser source. Using ultra-low-noise, high-efficiency transition-edge sensor photodetectors, we have implemented the first version of a decoy-state protocol that incorporates finite statistics without the use of Gaussian approximations in a one-way QKD system, enabling the creation of secure keys immune to photon-number-splitting attacks and highly resistant to Trojan horse attacks over 107 km of optical fiber.Comment: 4 pages, 3 figure

    Electrical properties of Bi-implanted amorphous chalcogenide films

    Full text link
    The impact of Bi implantation on the conductivity and the thermopower of amorphous chalcogenide films is investigated. Incorporation of Bi in Ge-Sb-Te and GeTe results in enhanced conductivity. The negative Seebeck coefficient confirms onset of the electron conductivity in GeTe implanted with Bi at a dose of 2x1016 cm-2. The enhanced conductivity is accompanied by defect accumulation in the films upon implantation as is inferred by using analysis of the space-charge limited current. The results indicate that native coordination defects in lone-pair semiconductors can be deactivated by means of ion implantation, and higher conductivity of the films stems from additional electrically active defects created by implantation of bismuth.Comment: This is an extended version of the results presented in Proc. SPIE 8982, 898213 (2014

    Self-avoiding walks and polygons on the triangular lattice

    Full text link
    We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monomer from the end points. For self-avoiding polygons to length 58 we calculate series for the mean-square radius of gyration and the first 10 moments of the area. Analysis of the series yields accurate estimates for the connective constant of triangular self-avoiding walks, μ=4.150797226(26)\mu=4.150797226(26), and confirms to a high degree of accuracy several theoretical predictions for universal critical exponents and amplitude combinations.Comment: 24 pages, 6 figure

    Sequence analysis in Bos taurus reveals pervasiveness of X–Y arms races in mammalian lineages

    Get PDF
    Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome o

    TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions

    Get PDF
    We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30 star-forming cores and 8 star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20" resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusions in a statistical sense from the ensemble of sources, bearing in mind that these average orientations can be quite uncertain. We discuss three main findings: (1) A subset of the sources have consistent magnetic field (B-field) orientations between large (~20") and small (~2.5") scales. Those same sources also tend to have higher fractional polarizations than the sources with inconsistent large-to-small-scale fields. We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows appear to be randomly aligned with B-fields; although, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5" resolution we see the so-called "polarization hole" effect, where the fractional polarization drops significantly near the total intensity peak. All data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps (32 pp., 34 figures), source descriptions (8 pp.). Accepted by the Astrophysical Journal Supplemen

    The microanalysis of iron and sulphur oxidation states in silicate glass - Understanding the effects of beam damage

    Get PDF
    Quantifying the oxidation state of multivalent elements in silicate melts (e.g., Fe²⁺ versus Fe³⁺ or S²⁻ versus S⁶⁺) is fundamental for constraining oxygen fugacity. Oxygen fugacity is a key thermodynamic parameter in understanding melt chemical history from the Earth's mantle through the crust to the surface. To make these measurements, analyses are typically performed on small (<100 µm diameter) regions of quenched volcanic melt (now silicate glass) forming the matrix between crystals or as trapped inclusions. Such small volumes require microanalysis, with multiple techniques often applied to the same area of glass to extract the full range of information that will shed light on volcanic and magmatic processes. This can be problematic as silicate glasses are often unstable under the electron and photon beams used for this range of analyses. It is therefore important to understand any compositional and structural changes induced within the silicate glass during analysis, not only to ensure accurate measurements (and interpretations), but also that subsequent analyses are not compromised. Here, we review techniques commonly used for measuring the Fe and S oxidation state in silicate glass and explain how silicate glass of different compositions responds to electron and photon beam irradiation

    Bacterial vaginosis among women at high risk for HIV in Uganda: high rate of recurrent diagnosis despite treatment.

    Get PDF
    OBJECTIVES: Bacterial vaginosis (BV) is associated with increased risk for sexually transmitted infections (STIs) and HIV acquisition. This study describes the epidemiology of BV in a cohort of women at high risk for STI/HIV in Uganda over 2 years of follow-up between 2008-2011. METHODS: 1027 sex workers or bar workers were enrolled and asked to attend 3-monthly follow-up visits. Factors associated with prevalent BV were analysed using multivariate random-effects logistic regression. The effect of treatment on subsequent episodes of BV was evaluated with survival analysis. RESULTS: Prevalences of BV and HIV at enrolment were 56% (573/1027) and 37% (382/1027), respectively. Overall, 905 (88%) women tested positive for BV at least once in the study, over a median of four visits. Younger age, a higher number of previous sexual partners and current alcohol use were independently associated with prevalent BV. BV was associated with STIs, including HIV. Hormonal contraception and condom use were protective against BV. Among 853 treated BV cases, 72% tested positive again within 3 months. There was no difference in time to subsequent BV diagnosis between treated and untreated women. CONCLUSIONS: BV was highly prevalent and persistent in this cohort despite treatment. More effective treatment strategies are urgently needed

    Quantum Cryptography

    Full text link
    Quantum cryptography is a new method for secret communications offering the ultimate security assurance of the inviolability of a Law of Nature. In this paper we shall describe the theory of quantum cryptography, its potential relevance and the development of a prototype system at Los Alamos, which utilises the phenomenon of single-photon interference to perform quantum cryptography over an optical fiber communications link.Comment: 36 pages in compressed PostScript format, 10 PostScript figures compressed tar fil
    corecore