3,331 research outputs found

    The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field

    Get PDF
    We study the instability of a Bénard layer subject to a vertical uniform magnetic field, in which the fluid obeys the Maxwell–Cattaneo (MC) heat flux–temperature relation. We extend the work of Bissell (Proc. R. Soc. A 472, 20160649 (doi:10.1098/rspa.2016.0649)) to non-zero values of the magnetic Prandtl number pm. With non-zero pm, the order of the dispersion relation is increased, leading to considerably richer behaviour. An asymptotic analysis at large values of the Chandrasekhar number Q confirms that the MC effect becomes important when C Q1/2 is O(1), where C is the MC number. In this regime, we derive a scaled system that is independent of Q. When CQ1/2 is large, the results are consistent with those derived from the governing equations in the limit of Prandtl number p → ∞ with pm finite; here we identify a new mode of instability, which is due neither to inertial nor induction effects. In the large pm regime, we show how a transition can occur between oscillatory modes of different horizontal scale. For Q ≫ 1 and small values of p, we show that the critical Rayleigh number is non-monotonic in p provided that C > 1/6. While the analysis of this paper is performed for stress-free boundaries, it can be shown that other types of mechanical boundary conditions give the same leading-order results

    Supermembrane interaction with dynamical D=4 N=1 supergravity. Superfield Lagrangian description and spacetime equations of motion

    Full text link
    We obtain the complete set of equations of motion for the interacting system of supermembrane and dynamical D=4 N = 1 supergravity by varying its complete superfield action and writing the resulting superfield equations in the special gauge where the supermembrane Goldstone field is set to zero. We solve the equations for auxiliary fields and discuss the effect of dynamical generation of cosmological constant in the Einstein equation of interacting system and its renormalization due to some regular contributions from supermembrane. These two effects (discussed in late 70th and 80th, in the bosonic perspective and in the supergravity literature) result in that, generically, the cosmological constant has different values in the branches of the spacetime separated by the supermembrane worldvolume.Comment: 23 pages, no figures. V2 two references added, 24 page

    Rapidly rotating Maxwell-Cattaneo convection

    Get PDF
    Motivated by astrophysical and geophysical applications, the classical problem of rotating Rayleigh-Bénard convection has been widely studied. Assuming a classical Fourier heat law, in which the heat flux is directly proportional to the temperature gradient, the evolution of temperature is governed by a parabolic advection-diffusion equation; this, in turn, implies an infinite speed of propagation of information. In reality, the system is rendered hyperbolic by extending the Fourier law to include an advective derivative of the flux—the Maxwell-Cattaneo (M-C) effect. Although the correction (measured by the parameter Γ , a nondimensional representation of the relaxation time) is nominally small, it represents a singular perturbation and hence can lead to significant effects when the rotation rate (measured by the Taylor number T ) is sufficiently high. In this paper, we investigate the linear stability of rotating convection, incorporating the M-C effect, concentrating on the regime of T ≫ 1 , Γ ≪ 1 . On increasing Γ for a fixed T ≫ 1 , the M-C effect first comes into play when Γ = O ( T − 1 / 3 ) . Here, as in the classical problem, the preferred mode can be either steady or oscillatory, depending on the value of the Prandtl number σ . For Γ > O ( T − 1 / 3 ) , the influence of the M-C effect is sufficiently strong that the onset of instability is always oscillatory, regardless of the value of σ . Within this regime, the dependence on σ of the critical Rayleigh number and of the scale of the preferred mode are explored through the analysis of specific distinguished limits

    Determination of pH in Regions of the Midguts of Acaridid Mites

    Get PDF
    The pH of the guts of mites strongly affects their digestive processes. This study was carried out to determine the pH in the guts of 12 species of stored product and house dust mites. Eighteen pH indicators were chosen and offered to the mites in the feeding biotest. Based on the color changes of the indicators, the gut contents of acaridid mites were determined to be within a pH range of 4 to neutral. The gut contents showed a gradient in pH from the anterior to the posterior part. The anterior midgut (ventriculus and caeca) of most species had a pH ranging from 4.5 to 5, or slightly more alkaline for most of the species, while the middle midgut (intercolon/colon) had a pH of 5 to 6. Finally, the pH of the posterior midgut (postcolon) was between 5.5 and 7. Except for Dermatophagoides spp., no remarkable differences in the pH of the gut were observed among the tested species. Dermatophagoides spp. had a more acidic anterior midgut (a pH of 4 to 5) and colon (a pH of 5) with postcolon (a pH of below 6). The results characterizing in vivo conditions in the mite gut offer useful information to study the activity of mite digestive enzymes including their inhibitors and gut microflora

    A disk of dust and molecular gas around a high-mass protostar

    Full text link
    The processes leading to the birth of low-mass stars such as our Sun have been well studied, but the formation of high-mass (> 8 x Sun's mass) stars has heretofore remained poorly understood. Recent observational studies suggest that high-mass stars may form in essentially the same way as low-mass stars, namely via an accretion process, instead of via merging of several low-mass (< 8 Msun) stars. However, there is as yet no conclusive evidence. Here, we report the discovery of a flattened disk-like structure observed at submillimeter wavelengths, centered on a massive 15 Msun protostar in the Cepheus-A region. The disk, with a radius of about 330 astronomical units (AU) and a mass of 1 to 8 Msun, is detected in dust continuum as well as in molecular line emission. Its perpendicular orientation to, and spatial coincidence with the central embedded powerful bipolar radio jet, provides the best evidence yet that massive stars form via disk accretion in direct analogy to the formation of low-mass stars

    Prenatal paracetamol exposure is associated with shorter anogenital distance in male infants.

    Get PDF
    STUDY QUESTION: What is the relationship between maternal paracetamol intake during the masculinisation programming window (MPW, 8-14 weeks of gestation) and male infant anogenital distance (AGD), a biomarker for androgen action during the MPW? SUMMARY ANSWER: Intrauterine paracetamol exposure during 8-14 weeks of gestation is associated with shorter AGD from birth to 24 months of age. WHAT IS ALREADY KNOWN: The increasing prevalence of male reproductive disorders may reflect environmental influences on foetal testicular development during the MPW. Animal and human xenograft studies have demonstrated that paracetamol reduces foetal testicular testosterone production, consistent with reported epidemiological associations between prenatal paracetamol exposure and cryptorchidism. STUDY DESIGN, SIZE, DURATION: Prospective cohort study (Cambridge Baby Growth Study), with recruitment of pregnant women at ~12 post-menstrual weeks of gestation from a single UK maternity unit between 2001 and 2009, and 24 months of infant follow-up. Of 2229 recruited women, 1640 continued with the infancy study after delivery, of whom 676 delivered male infants and completed a medicine consumption questionnaire. PARTICIPANTS/MATERIALS, SETTING, METHOD: Mothers self-reported medicine consumption during pregnancy by a questionnaire administered during the perinatal period. Infant AGD (measured from 2006 onwards), penile length and testicular descent were assessed at 0, 3, 12, 18 and 24 months of age, and age-specific Z scores were calculated. Associations between paracetamol intake during three gestational periods (14 weeks) and these outcomes were tested by linear mixed models. Two hundred and twenty-five (33%) of six hundred and eighty-one male infants were exposed to paracetamol during pregnancy, of whom sixty-eight were reported to be exposed during 8-14 weeks. AGD measurements were available for 434 male infants. MAIN RESULTS AND THE ROLE OF CHANCE: Paracetamol exposure during 8-14 weeks of gestation, but not any other period, was associated with shorter AGD (by 0.27 SD, 95% CI 0.06-0.48, P = 0.014) from birth to 24 months of age. This reduction was independent of body size. Paracetamol exposure was not related to penile length or testicular descent. LIMITATIONS, REASONS FOR CAUTION: Confounding by other drugs or endocrine-disrupting chemicals cannot be discounted. The cohort was not fully representative of pregnant women in the UK, particularly in terms of maternal ethnicity and smoking prevalence. There is likely to have been misclassification of paracetamol exposure due to recall error. WIDER IMPLICATIONS OF THE FINDINGS: Our observational findings support experimental evidence that intrauterine paracetamol exposure during the MPW may adversely affect male reproductive development. STUDY FUNDING/COMPETING INTERESTS: This work was supported by a European Union Framework V programme, the World Cancer Research Fund International, the Medical Research Council (UK), the Newlife Foundation for Disabled Children, the Evelyn Trust, the Mothercare Group Foundation, Mead Johnson Nutrition, and the National Institute for Health Research Cambridge Comprehensive Biomedical Research Centre. The authors declare no conflict of interest.European Union (Framework V programme), World Cancer Research Fund International, Medical Research Council (UK), Newlife Foundation for Disabled Children, Evelyn Trust, Mothercare Group Foundation, Mead Johnson Nutrition, National Institute for Health Research Cambridge Comprehensive Biomedical Research CentreThis is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Oxford University Press

    Society for Endocrinology UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development (Revised 2015).

    Get PDF
    It is paramount that any child or adolescent with a suspected disorder of sex development (DSD) is assessed by an experienced clinician with adequate knowledge about the range of conditions associated with DSD. If there is any doubt, the case should be discussed with the regional DSD team. In most cases, particularly in the case of the newborn, the paediatric endocrinologist within the regional team acts commonly as the first point of contact. This clinician should be part of a multidisciplinary team experienced in management of DSD and should ensure that the affected person and parents have access to specialist psychological support and that their information needs are comprehensively addressed. The underlying pathophysiology of DSD and the strengths and weaknesses of the tests that can be performed should be discussed with the parents and affected young person and tests undertaken in a timely fashion. Finally, in the field of rare conditions, it is imperative that the clinician shares the experience with others through national and international clinical and research collaboration

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • …
    corecore