1,828 research outputs found
Characterizing the transition from diffuse atomic to dense molecular clouds in the Magellanic clouds with [CII], [CI], and CO
We present and analyze deep Herschel/HIFI observations of the [CII] 158um,
[CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large
and Small Magellanic clouds. These observations are used to determine the
physical conditions of the line--emitting gas, which we use to study the
transition from atomic to molecular gas and from C^+ to C^0 to CO in their low
metallicity environments. We trace gas with molecular fractions in the range
0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption
(f(H2)<0.2) and well shielded regions in which hydrogen is essentially
completely molecular. The C^0 and CO column densities are only measurable in
regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized
carbon is the dominant gas-phase form of this element that is associated with
molecular gas, with C^0 and CO representing a small fraction, implying that
most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is
CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are
larger than the value typically found in the Milky Way. When applying a
correction based on the filling factor of the CO emission, we find that the
values of X_CO in the LMC and SMC are closer to that in the Milky Way. The
observed [CII] intensity in our sample represents about 1% of the total
far-infrared intensity from the LOSs observed in both Magellanic Clouds.Comment: 32 pages, 21 figures, Accepted to Ap
Sub-millimeter Observations of Giant Molecular Clouds in the Large Magellanic Cloud: Temperature and Density as Determined from J=3-2 and J=1-0 transitions of CO
We have carried out sub-mm 12CO(J=3-2) observations of 6 giant molecular
clouds (GMCs) in the Large Magellanic Cloud (LMC) with the ASTE 10m sub-mm
telescope at a spatial resolution of 5 pc and very high sensitivity. We have
identified 32 molecular clumps in the GMCs and revealed significant details of
the warm and dense molecular gas with n(H2) 10 cm and
Tkin 60 K. These data are combined with 12CO(J=1-0) and 13CO(J=1-0)
results and compared with LVG calculations. We found that the ratio of
12CO(J=3-2) to 12CO(J=1-0) emission is sensitive to and is well correlated with
the local Halpha flux. We interpret that differences of clump propeties
represent an evolutionary sequence of GMCs in terms of density increase leading
to star formation.Type I and II GMCs (starless GMCs and GMCs with HII regions
only, respectively) are at the young phase of star formation where density does
not yet become high enough to show active star formation and Type III GMCs
(GMCs with HII regions and young star clusters) represents the later phase
where the average density is increased and the GMCs are forming massive stars.
The high kinetic temperature correlated with \Halpha flux suggests that FUV
heating is dominant in the molecular gas of the LMC.Comment: 74 pages, including 41 figures, accepted for publication in ApJ
Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies
Background: The measurement of biomarkers in cerebrospinal fluid (CSF) has gained increasing acceptance in establishing the diagnosis of some neurodegenerative diseases. Heart-type fatty acid-binding protein (H-FABP) was recently discovered in CSF and serum of patients with neurodegenerative diseases. Objective: We investigated H-FABP in CSF and serum alone and in combination with CSF tau protein to evaluate these as potential biomarkers for the differentiation between dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). Methods: We established H-FABP and tau protein values in a set of 144 persons with DLB (n = 33), Parkinson disease with dementia (PDD; n = 25), AD (n = 35) and nonclemented neurological controls (NNC; n = 51). Additionally, serum H-FABP levels were analyzed in idiopathic Parkinson disease patients without evidence of cognitive decline (n = 45) using commercially available enzyme-linked immunosorbent assays. We calculated absolute values of HFABP and tau protein in CSF and serum and established relative ratios between the two to obtain the best possible match for the clinical working diagnosis. Results: Serum HFABP levels were elevated in DLB and PDD patients compared with NNC and AD subjects. To better discriminate between DLB and AD, we calculated the ratio of serum H-FABP to CSF tau protein levels. At the arbitrary chosen cutoff ratio >= 8 this quotient reached a sensitivity of 91% and a specificity of 66%. Conclusion: Our results suggest that the measurement of CSF tau protein, together with H-FABP quantification in serum and CSF, and the ratio of serum H-FABP to CSF tau protein represent marker candidates for the differentiation between AD and DLB. Copyright (c) 2007 S. Karger AG, Basel
The Atacama Cosmology Telescope: A Measurement of the Thermal Sunyaev-Zel'dovich Effect Using the Skewness of the CMB Temperature Distribution
We present a detection of the unnormalized skewness induced by the
thermal Sunyaev-Zel'dovich (tSZ) effect in filtered Atacama Cosmology Telescope
(ACT) 148 GHz cosmic microwave background temperature maps. Contamination due
to infrared and radio sources is minimized by template subtraction of resolved
sources and by constructing a mask using outlying values in the 218 GHz
(tSZ-null) ACT maps. We measure = -31 +- 6 \mu K^3 (measurement error
only) or +- 14 \mu K^3 (including cosmic variance error) in the filtered ACT
data, a 5-sigma detection. We show that the skewness is a sensitive probe of
sigma_8, and use analytic calculations and tSZ simulations to obtain
cosmological constraints from this measurement. From this signal alone we infer
a value of sigma_8= 0.79 +0.03 -0.03 (68 % C.L.) +0.06 -0.06 (95 % C.L.). Our
results demonstrate that measurements of non-Gaussianity can be a useful method
for characterizing the tSZ effect and extracting the underlying cosmological
information.Comment: 9 pages, 5 figures. Replaced with version accepted by Phys. Rev. D,
with improvements to the likelihood function and the IR source treatment;
only minor changes in the result
Integer Quantum Hall Effect in Double-Layer Systems
We consider the localization of independent electron orbitals in double-layer
two-dimensional electron systems in the strong magnetic field limit. Our study
is based on numerical Thouless number calculations for realistic microscopic
models and on transfer matrix calculations for phenomenological network models.
The microscopic calculations indicate a crossover regime for weak interlayer
tunneling in which the correlation length exponent appears to increase.
Comparison of network model calculations with microscopic calculations casts
doubt on their generic applicability.Comment: 14 pages, 12 figures included, RevTeX 3.0 and epsf. Additional
reference
The Atacama Cosmology Telescope: Sunyaev-Zel'dovich Selected Galaxy Clusters at 148 GHz from Three Seasons of Data
[Abridged] We present a catalog of 68 galaxy clusters, of which 19 are new
discoveries, detected via the Sunyaev-Zel'dovich effect (SZ) at 148 GHz in the
Atacama Cosmology Telescope (ACT) survey of 504 square degrees on the celestial
equator. A subsample of 48 clusters within the 270 square degree region
overlapping SDSS Stripe 82 is estimated to be 90% complete for M_500c > 4.5e14
Msun and 0.15 < z < 0.8. While matched filters are used to detect the clusters,
the sample is studied further through a "Profile Based Amplitude Analysis"
using a single filter at a fixed \theta_500 = 5.9' angular scale. This new
approach takes advantage of the "Universal Pressure Profile" (UPP) to fix the
relationship between the cluster characteristic size (R_500) and the integrated
Compton parameter (Y_500). The UPP scalings are found to be nearly identical to
an adiabatic model, while a model incorporating non-thermal pressure better
matches dynamical mass measurements and masses from the South Pole Telescope. A
high signal to noise ratio subsample of 15 ACT clusters is used to obtain
cosmological constraints. We first confirm that constraints from SZ data are
limited by uncertainty in the scaling relation parameters rather than sample
size or measurement uncertainty. We next add in seven clusters from the ACT
Southern survey, including their dynamical mass measurements based on galaxy
velocity dispersions. In combination with WMAP7 these data simultaneously
constrain the scaling relation and cosmological parameters, yielding \sigma_8 =
0.829 \pm 0.024 and \Omega_m = 0.292 \pm 0.025. The results include
marginalization over a 15% bias in dynamical mass relative to the true halo
mass. In an extension to LCDM that incorporates non-zero neutrino mass density,
we combine our data with WMAP7+BAO+Hubble constant measurements to constrain
\Sigma m_\nu < 0.29 eV (95% C. L.).Comment: 32 pages, 21 figures To appear in J. Cosmology and Astroparticle
Physic
- …