981 research outputs found

    Understanding Fomalhaut as a Cooper pair

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Fomalhaut is a nearby stellar system and has been found to be a triple based on astrometric observations. With new radial velocity and astrometric data, we study the association between Fomalhaut A, B, and C in a Bayesian framework, finding that the system is gravitationally bound or at least associated. Based on simulations of the system, we find that Fomalhaut C can be easily destabilized through combined perturbations from the Galactic tide and stellar encounters. Considering that observing the disruption of a triple is probably rare in the solar neighbourhood, we conclude that Fomalhaut C is a so-called 'gravitational pair' of Fomalhaut A and B. Like the Cooper pair mechanism in superconductors, this phenomenon only appears once the orbital energy of a component becomes comparable with the energy fluctuations caused by the environment. Based on our simulations, we find (1) an upper limit of 8 kms -1 velocity difference is appropriate when selecting binary candidates, and (2) an empirical formula for the escape radius, which is more appropriate than tidal radius when measuring the stability of wide binaries.Peer reviewe

    Efficient Follow-Up of Exoplanet Transits Using Small Telescopes

    Get PDF
    11 pages, 5 figures, to be published in PASP, comments welcomeHere, we introduce an online tool for the prediction of exoplanet transit light curves. Small telescopes can readily capture exoplanet transits under good weather conditions when the combination of a bright star and a large transiting exoplanet results in a significant depth of transit. However, in reality there are many considerations that need to be made to obtain useful measurements. This paper and the accompanying website lay out a procedure based on timeseries differential photometry that has been successfully employed using 0.4 m aperture telescopes to predict the expected precision for a whole light curve. This enables robust planning to decide whether the observation of a particular exoplanet transit should be attempted, and in particular to be able to readily see when it should not to be attempted. This may result in a significant increase in the number of transit observations captured by non-specialists. The technique and website are also appropriate for planning a variety of variable star observations where a prediction of the light curve can be made.Peer reviewe

    Probabilistic galactic dynamics I - the Sun and GJ 710 with Monte Carlo, linearised and unscented treatments

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Deterministic galactic dynamics is impossible due to the space-time randomness caused by gravitational waves. Instead of treating stellar orbits deterministically, we integrate not only the mean but also the covariance of a stellar orbit in the Galaxy. As a test case we study the probabilistic dynamics of the Sun and the star GJ 710 which is expected to cross the Oort Cloud in 1.3 Myr. We find that the uncertainty in the galactic model and the Sun's initial conditions are important for understanding such stellar close encounters. Our study indicates significant uncertainty in the solar motion within 1 Gyr and casts doubt on claims of a strict periodic orbit. In order to make such calculations more practical we investigate the utility of the linearised and unscented transformations as two efficient schemes relative to a baseline of Monte Carlo calculations. We find that the linearised transformation predicts the uncertainty propagation as precisely as the Monte Carlo method for a few million years at least 700 times faster. Around an order of magnitude slower, the unscented transformation provides relative uncertainty propagation to a very high precision for tens of millions of years. There exist a variety of problems in galactic dynamics which require the propagation of the orbital uncertainty for more than one or two objects and the first order linearised transformation provides an efficient method which works to Gyr time scales for small initial uncertainty problems and for propagation over hundreds of million years for larger initial uncertainty problems.Peer reviewe

    Detection of the nearest Jupiter analog in radial velocity and astrometry data

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.The presence of Jupiter is crucial to the architecture of the Solar System and models underline this to be a generic feature of planetary systems. We find the detection of the difference between the position and motion recorded by the contemporary astrometric satellite Gaia and its precursor Hipparcos can be used to discover Jupiter-like planets. We illustrate how observations of the nearby star ε\varepsilon Indi A giving astrometric and radial velocity data can be used to independently find the orbit of its suspected companion. The radial velocity and astrometric data provide complementary detections which allow for a much stronger solution than either technique would provide individually. We quantify ε\varepsilon Indi A b as the closest Jupiter-like exoplanet with a mass of 3 MJupM_{Jup} on a slightly eccentric orbit with an orbital period of 45 yr. While other long-period exoplanets have been discovered, ε\varepsilon Indi A b provides a well constrained mass and along with the well-studied brown dwarf binary in orbit around ε\varepsilon Indi A means that the system provides a benchmark case for our understanding of the formation of gas giant planets and brown dwarfs.Peer reviewe

    Modeling and Calibration of Gaia, Hipparcos, and Tycho-2 astrometric data for the detection of dark companions

    Get PDF
    © 2024 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Hidden within the Gaia satellite’s multiple data releases lies a valuable cache of dark companions. To facilitate the efficient and reliable detection of these companions via combined analyses involving the Gaia, Hipparcos, and Tycho-2 catalogs, we introduce an astrometric modeling framework. This method incorporates analytical least-square minimization and nonlinear parameter optimization techniques to a set of common calibration sources across the different space-based astrometric catalogs. This enables us to discern the error inflation, astrometric jitter, differential parallax zero-points, and frame rotation of various catalogs relative to Gaia Data Release 3 (DR3). Our findings yield the most precise Gaia DR2 calibration parameters to date, revealing notable dependencies on magnitude and color. Intriguingly, we identify submilliarcsecond frame rotation between Gaia DR1 and DR3, along with an estimated astrometric jitter of 2.16 mas for the revised Hipparcos catalog. In a thorough comparative analysis with previous studies, we offer recommendations on calibrating and utilizing different catalogs for companion detection. Furthermore, we provide a user-friendly pipeline (https://github.com/ruiyicheng/Download_HIP_Gaia_GOST) for catalog download and bias correction, enhancing accessibility and usability within the scientific community.Peer reviewe

    Search for nearby Earth analogs I. 15 planet candidates found in PFS data

    Get PDF
    30 pages, 20 figures, 3 tables, accepted for publication in ApJSThe radial velocity (RV) method plays a major role in the discovery of nearby exoplanets. To efficiently find planet candidates from the data obtained in high-precision RV surveys, we apply a signal diagnostic framework to detect RV signals that are statistically significant, consistent in time, robust in the choice of noise models, and do not correlated with stellar activity. Based on the application of this approach to the survey data of the Planet Finder Spectrograph, we report 15 planet candidates located in 14 stellar systems. We find that the orbits of the planet candidates around HD 210193, 103949, 8326, and 71135 are consistent with temperate zones around these stars (where liquid water could exist on the surface). With periods of 7.76 and 15.14 days, respectively, the planet candidates around star HIP 54373 form a 1:2 resonance system. These discoveries demonstrate the feasibility of automated detection of exoplanets from large RV surveys, which may provide a complete sample of nearby Earth analogs.Peer reviewedFinal Accepted Versio

    High eccentricity planets from the Anglo-Australian Planet Search

    Get PDF
    We report Doppler measurements of the stars HD187085 and HD20782 which indicate two high eccentricity low-mass companions to the stars. We find HD187085 has a Jupiter-mass companion with a ~1000d orbit. Our formal `best fit' solution suggests an eccentricity of 0.47, however, it does not sample the periastron passage of the companion and we find that orbital solutions with eccentricities between 0.1 and 0.8 give only slightly poorer fits (based on RMS and chi^2) and are thus plausible. Observations made during periastron passage in 2007 June should allow for the reliable determination of the orbital eccentricity for the companion to HD187085. Our dataset for HD20782 does sample periastron and so the orbit for its companion can be more reliably determined. We find the companion to HD20782 has M sin i=1.77+/-0.22M_JUP, an orbital period of 595.86+/-0.03d and an orbit with an eccentricity of 0.92+/-0.03. The detection of such high-eccentricity (and relatively low velocity amplitude) exoplanets appears to be facilitated by the long-term precision of the Anglo-Australian Planet Search. Looking at exoplanet detections as a whole, we find that those with higher eccentricity seem to have relatively higher velocity amplitudes indicating higher mass planets and/or an observational bias against the detection of high eccentricity systems.Comment: to appear in MNRA
    corecore