39 research outputs found

    Translational implications of Th17-skewed inflammation due to genetic deficiency of a cadherin stress sensor

    Get PDF
    Desmoglein 1 (Dsg1) is a cadherin restricted to stratified tissues of terrestrial vertebrates, which serve as essential physical and immune barriers. Dsg1 loss-of-function mutations in humans result in skin lesions and multiple allergies, and isolated patient keratinocytes exhibit increased proallergic cytokine expression. However, the mechanism by which genetic deficiency of Dsg1 causes chronic inflammation is unknown. To determine the systemic response to Dsg1 loss, we deleted the 3 tandem Dsg1 genes in mice. Whole transcriptome analysis of embryonic Dsg1–/– skin showed a delay in expression of adhesion/differentiation/ keratinization genes at E17.5, a subset of which recovered or increased by E18.5. Comparing epidermal transcriptomes from Dsg1-deficient mice and humans revealed a shared IL-17–skewed inflammatory signature. Although the impaired intercellular adhesion observed in Dsg1–/– mice resembles that resulting from anti-Dsg1 pemphigus foliaceus antibodies, pemphigus skin lesions exhibit a weaker IL-17 signature. Consistent with the clinical importance of these findings, treatment of 2 Dsg1-deficient patients with an IL-12/IL-23 antagonist originally developed for psoriasis resulted in improvement of skin lesions. Thus, beyond impairing the physical barrier, loss of Dsg1 function through gene mutation results in a psoriatic-like inflammatory signature before birth, and treatment with a targeted therapy significantly improved skin lesions in patients

    Phosphorylation Alters the Interaction of the Arabidopsis Phosphotransfer Protein AHP1 with Its Sensor Kinase ETR1

    Get PDF
    The ethylene receptor ethylene response 1 (ETR1) and the Arabidopsis histidine-containing phosphotransfer protein 1 (AHP1) form a tight complex in vitro. According to our current model ETR1 and AHP1 together with a response regulator form a phosphorelay system controlling the gene expression response to the plant hormone ethylene, similar to the two-component signaling in bacteria. The model implies that ETR1 functions as a sensor kinase and is autophosphorylated in the absence of ethylene. The phosphoryl group is then transferred onto a histidine at the canonical phosphorylation site in AHP1. For phosphoryl group transfer both binding partners need to form a tight complex. After ethylene binding the receptor is switched to the non-phosphorylated state. This switch is accompanied by a conformational change that decreases the affinity to the phosphorylated AHP1. To test this model we used fluorescence polarization and examined how the phosphorylation status of the proteins affects formation of the suggested ETR1−AHP1 signaling complex. We have employed various mutants of ETR1 and AHP1 mimicking permanent phosphorylation or preventing phosphorylation, respectively. Our results show that phosphorylation plays an important role in complex formation as affinity is dramatically reduced when the signaling partners are either both in their non-phosphorylated form or both in their phosphorylated form. On the other hand, affinity is greatly enhanced when either protein is in the phosphorylated state and the corresponding partner in its non-phosphorylated form. Our results indicate that interaction of ETR1 and AHP1 requires that ETR1 is a dimer, as in its functional state as receptor in planta

    DNA Methods to Identify Missing Persons

    Full text link
    Human identification by DNA analysis in missing person cases typically involves comparison of two categories of sample: a reference sample, which could be obtained from intimate items of the person in question or from family members, and the questioned sample from the unknown person-usually derived from the bones, teeth, or soft tissues of human remains. Exceptions include the analysis of archived tissues, such as those held by hospital pathology departments, and the analysis of samples relating to missing, but living persons. DNA is extracted from the questioned and reference samples and well-characterized regions of the genetic code are amplified from each source using the Polymerase Chain Reaction (PCR), which generates sufficient copies of the target region for visualization and comparison of the genetic sequences obtained from each sample. If the DNA sequences of the questioned and reference samples differ, this is normally sufficient for the questioned DNA to be excluded as having come from the same source. If the sequences are identical, statistical analysis is necessary to determine the probability that the match is a consequence of the questioned sequence coming from the same individual who provided the reference sample or from a randomly occurring individual in the general population. Match probabilities that are currently achievable are frequently greater than 1 in 1 billion, allowing identity to be assigned with considerable confidence in many cases

    Conformation of the EPEC Tir Protein in Solution: Investigating the Impact of Serine Phosphorylation at Positions 434/463

    Get PDF
    The translocated intimin receptor (Tir) is a key virulence factor of enteropathogenic Escherichia coli and related bacteria. During infection, Tir is translocated via a type III secretion system into host intestinal epithelial cells, where it inserts into the target cell membrane and acts as a receptor for the bacterial adhesin intimin. The effects of phosphorylation by cAMP-dependent kinase at two serine residues (Ser-434 and Ser-463) within the C-terminal domain of Tir, which may be involved in mediating structural/electrostatic changes in the protein to promote membrane insertion or intermolecular interactions, have previously been investigated. This study has focused on defining the conformation of Tir in solution and assessing any conformational changes associated with serine phosphorylation at positions 434/463. In addition to phosphorylated protein, combinations of Ala (unphosphorylatable) and Asp (phosphate-mimic) mutations of Ser-434 and Ser-463 have been generated, and a range of techniques (sodium dodecyl sulfate polyacrylamide gel electrophoresis, circular dichroism spectroscopy, analytical ultracentrifugation) used to further dissect the structural role and functional implications of changes in residue size/charge at these positions. The results have shown that under physiological NaCl concentrations, Tir is a monomer and adopts a highly elongated state in solution, consistent with a natively unfolded conformation. Despite this, perturbations in the structure in response to buffer conditions and the nature of the residues at positions 434 and 463 are apparent, and may be functionally relevant
    corecore