2,751 research outputs found

    Microbial biofilm studies of the environmental control and life support system water recovery test for Space Station Freedom

    Get PDF
    NASA is developing a water recovery system (WRS) for Space Station Freedom to reclaim human waste water for reuse by astronauts as hygiene or potable water. A water recovery test (WRT) currently in progress investigates the performance of a prototype of the WRS. Analysis of biofilm accumulation, the potential for microbially influenced corrosion (MIC) in the WRT, and studies of iodine disinfection of biofilm are reported. Analysis of WRT components indicated the presence of organic deposits and biofilms in selected tubing. Water samples for the WRT contained acid-producing and sulfate-reducing organisms implicated in corrosion processes. Corrosion of an aluminum alloy was accelerated in the presence of these water samples; however, stainless steel corrosion rates were not accelerated. Biofilm iodine sensitivity tests using an experimental laboratory scale recycled water system containing a microbial check valve (MCV) demonstrated that an iodine concentration of 1 to 2 mg/L was ineffective in eliminating microbial biofilm. For complete disinfection, an initial concentration of 16 mg/L was required, which was gradually reduced by the MCV over 4 to 8 hours to 1 to 2 mg/L. This treatment may be useful in controlling biofilm formation

    Enhancement of Specific Immunofluorescent Finding with Use of a Para-Phenylenediamine Mounting Buffer

    Get PDF
    A recently described immunofluorescence mounting buffer containing para-phenylenediamine prevents fading of specific staining in skin sections during microscopic examination, and allows better appreciation of morphological detail. Examination of slides at high powers with intense illumination, as well as improved photomicrographs, are possible with this reagent

    A program to develop a high-energy density primary battery with a minimum of 200 watt hours per pound of total battery weight Eighth quarterly report, 1 Apr. - 30 Jun. 1966

    Get PDF
    Electrochemical characteristics of lithium in various electrolytes and magnesium in aluminum chloride-acetonitrile studied by voltammetric sweep metho

    A study on aircraft map display location and orientation

    Get PDF
    Six airline pilots participated in a fixed-base simulator study to determine the effects of two Horizontal Situation Display (HSD/map) panel locations relative to the Vertical Situation Display (VSD), and of three map orientations on manual piloting performance. Pilot comments and opinions were formally obtained. Significant performance differences were found between wind conditions, and among pilots, but not between map locations and orientations. The results also illustrate the potential tracking accuracy of such a display. Recommendations concerning display location and map orientation are made

    Optimal Controller Identification for multivariable non-minimum phase systems

    Full text link
    This paper extends the formulation of a data-driven control method - the Optimal Controller Identification (OCI) - to cope with non-minimum phase (NMP) systems, without a priori knowledge of the NMP transmission zero, i.e. without obtaining a prior model of the plant - as in any data-driven approach. The method is based on the Model Reference paradigm, in which the desired closed-loop performance is specified by means of a closed-loop transfer function - the reference model. Considering a convenient parametrization of the latter and a flexible performance criterion, it is possible to identify the NMP transmission zeros of the plant along with the optimal controller parameters, as it will be shown. Both diagonal and block-triangular reference model structures are treated in detail. Simulation examples show the effectiveness of the proposed approach

    Flutter analysis of a supersonic cascade in time domain using an ADI Euler solver

    Get PDF
    The aeroelastic stability of a two-dimensional cascade oscillating in supersonic axial flow is analyzed in the time domain. The aeroelastic model consists of a single degree of freedom typical section structural model for each blade of the cascade and an unsteady two-dimensional cascade aerodynamic model based on the Euler equations. The Euler equations are solved using a time accurate Alternating Direction Implicit (ADI) solution scheme. The aeroelastic equations are integrated in time. The effect of interblade phase angle is included in the aeroelastic analysis by an appropriate choice of initial and boundary conditions. Flutter predictions are obtained from the time response of a flat plate cascade in single degree of freedom pitching motion. The results correlate well with those obtained from a separate frequency domain flutter analysis for all values of interblade phase angles considered. Flutter results are then presented for cascades having airfoil sections representative of a supersonic throughflow fan. The validity of the time integration method for a cascade of airfoils at various interblade phase angles is demonstrated

    The appearance of "forbidden lines" in spectra

    Get PDF
    A rough calculation shows that the quadrupole term in the radiation of a forbidden line is usually larger than the dipole produced by an external electric field. This is not true, however, when there is an intermediate state, with which both initial and final states combine, and which lies close to one of them. If the J selection rule is violated, and the Laporte rule is obeyed, the radiation cannot be due to the quadrupole term and must be ascribed to the octopole. Hg 2270 is such a line. An octopole transition will have a Zeeman effect distinctively different from that of a dipole or quadrupole

    Electric Motor Noise from Small Quadcopters

    Get PDF
    The increased interest in electric motors for propulsion systems has driven interest in quantifying the contribution of electric motor noise to the overall sound levels and possible human annoyance of the propulsion system. This work presents acoustic measurements of electric motors used for small quadcopters to quantify the sound produced by a number of outrunning motors with different types of controllers. Results are presented for loaded and unloaded motors as installed and uninstalled configurations. Motor resonance frequencies were measured and computed. Current probe measurements showed that the supply current from the controllers contained significant harmonic content for the conventional and sinewave controllers. Acoustic results showed motor noise is typically radiated at frequencies near the mode 2 vibration frequency at roughly 5000 Hz. Electric motor noise was evident in the spectra produced by many of the motor-controller combinations for motors loaded with propellers with levels often greater than those for the motor alone due to increase in the stator magnetic flux density with increased current. An installed configuration produced increases in acoustic radiation over that of the uninstalled motor in a frequency range near the mode 1 vibration frequency near 1200 Hz. A companion paper (Part I - Acoustic Measurements), focuses on source identification using a phased array and directivity characteristics for a baseline configuration

    Reducing Polarization Mode Dispersion With Controlled Polarization Rotations

    Get PDF
    One of the fundamental limitations to high bit rate, long distance, telecommunication in optical fibers is Polarization Mode Dispersion (PMD). Here we introduce a conceptually new method to reduce PMD in optical fibers by carrying out controlled rotations of polarization at predetermined locations along the fiber. The distance between these controlled polarization rotations must be less than both the beat length and the mode coupling length of the fiber. This method can also be combined with the method in which the fiber is spun while it drawn. The incidence of imperfections on the efficiency of the method is analysed.Comment: 4 page
    corecore