203 research outputs found

    Shape oscillations of particle-coated bubbles and directional particle expulsion

    No full text
    Bubbles stabilised by colloidal particles can find applications in advanced materials, catalysis and drug delivery. For applications in controlled release, it is desirable to remove the particles from the interface in a programmable fashion. We have previously shown that ultrasound waves excite volumetric oscillations of particle-coated bubbles, resulting in precisely timed particle expulsion due to interface compression on a ultrafast timescale [Poulichet et al., Proc. Natl. Acad. Sci. USA, 2015, 112, 5932]. We also observed shape oscillations, which were found to drive directional particle expulsion from the antinodes of the non-spherical deformation. In this paper we investigate the mechanisms leading to directional particle expulsion during shape oscillations of particle-coated bubbles driven by ultrasound at 40 kHz. We perform high-speed visualisation of the interface shape and of the particle distribution during ultrafast deformation at a rate of up to 105 s −1 . The mode of shape oscillations is found to not depend on the bubble size, in contrast with what has been reported for uncoated bubbles. A decomposition of the non-spherical shape in spatial Fourier modes reveals that the interplay of different modes determines the locations of particle expulsion. The n-fold symmetry of the dominant mode does not always lead to desorption from all 2n antinodes, but only those where there is favourable alignment with the sub-dominant modes. Desorption from the antinodes of the shape oscillations is due to different, concurrent mechanisms. The radial acceleration of the interface at the antinodes can be up to 105 − 106 ms−2 , hence there is a contribution from the inertia of the particles localised at the antinodes. In addition, we found that particles migrate to the antinodes of the shape oscillation, thereby enhancing the contribution from the surface pressure in the monolayer

    Making superhydrophobic splashes by surface cooling

    Full text link
    We study experimentally the enhancement of splashing due to solidification. Investigating the impact of water drops on dry smooth surfaces, we show that the transition velocity to splash can be drastically reduced by cooling the surface below the liquid melting temperature. We find that at very low temperatures (below −60∘C-60 ^\circ \rm C), the splashing behaviour becomes independent of surface undercooling and presents the same characteristics as on ambient temperature superhydrophobic surfaces. This resemblance arises from an increase of the dynamic advancing contact angle of the lamella with surface undercooling, going from the isothermal hydrophilic to the superhydrophobic behaviour. We propose that crystal formation can affect the dynamic contact angle of the lamella, which would explain this surprising transition. Finally, we show that the transition from hydrophilic to superydrophobic behaviour can also be characterized quantitatively on the dynamics of the ejecta

    Contact Line Catch Up by Growing Ice Crystals

    Full text link
    The effect of freezing on contact line motion is a scientific challenge in the understanding of the solidification of capillary flows. In this letter, we experimentally investigate the spreading and freezing of a water droplet on a cold substrate. We demonstrate that solidification stops the spreading because the ice crystals catch up with the advancing contact line. Indeed, we observe the formation and growth of ice crystals along the substrate during the drop spreading, and show that their velocity equals the contact line velocity when the drop stops. Modelling the growth of the crystals, we predict the shape of the crystal front and show that the substrate thermal properties play a major role on the frozen drop radiusComment: Physical Review Letters, 22 juin 202

    Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets

    Full text link
    We study a liquid jet that breaks up into drops in an external co-flowing liquid inside a confining microfluidic geometry. The jet breakup can occur right after the nozzle in a phenomenon named dripping or through the generation of a liquid jet that breaks up a long distance from the nozzle, which is called jetting. Traditionally, these two regimes have been considered to reflect the existence of two kinds of spatiotemporal instabilities of a fluid jet, the dripping regime corresponding to an absolutely unstable jet and the jetting regime to a convectively unstable jet. Here, we present quantitative measurements of the dripping and jetting regimes, both in an unforced and a forced state, and compare these measurements with recent theoretical studies of spatiotemporal instability of a confined liquid jet in a co-flowing liquid. In the unforced state, the frequency of oscillation and breakup of the liquid jet is measured and compared to the theoretical predictions. The dominant frequency of the jet oscillations as a function of the inner flow rate agrees qualitatively with the theoretical predictions in the jetting regime but not in the dripping regime. In the forced state, achieved with periodic laser heating, the dripping regime is found to be insensitive to the perturbation and the frequency of drop formation remains unaltered. The jetting regime, on the contrary, amplifies the externally imposed frequency, which translates in the formation of drops at the frequency imposed by the external forcing. In conclusion, the dripping and jetting regimes are found to exhibit the main features of absolutely and convectively unstable flows respectively, but the frequency selection in the dripping regime is not ruled by the absolute frequency predicted by the stability analysis.Comment: 10 pages, 12 figures, to appear in Physics of Fluid

    Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close to the convective-absolute instability

    Full text link
    The influence of small additive noise on structure formation near a forwards and near an inverted bifurcation as described by a cubic and quintic Ginzburg Landau amplitude equation, respectively, is studied numerically for group velocities in the vicinity of the convective-absolute instability where the deterministic front dynamics would empty the system.Comment: 16 pages, 7 Postscript figure

    A shallow-water theory of river bedforms in supercritical conditions

    Get PDF
    A supercritical free-surface turbulent stream flowing over an erodible bottom can generate a characteristic pattern of upstream migrating bedforms known as antidunes. This morphological instability, which is quite common in fluvial environments, has attracted speculative and applicative interests, and has always been modelled in 2D or 3D mathematical frameworks. However, in this work we demonstrate that antidune instability can be described by means of a suitable one-dimensional model that couples the Dressler equations to a mechanistic model of the sediment particle deposition/entrainment. The results of the linear stability analysis match the experimental data very well, both for the instability region and the dominant wavelength. The analytical tractability of the 1D modeling allows us (1) to elucidate the key physical processes which drive antidune instability, (2) to show the secondary role played by sediment inertia, (3) to obtain the dispersion relation in explicit form, and (4) to demonstrate the absolute nature of antidune instabilit

    Convective nature of planimetric instability in meandering river dynamics

    Get PDF
    The convective nature of the linear instability of meandering river dynamics is analytically demonstrated and the corresponding Green's function is derived. The wave packet due to impulsive disturbance migrates along a river either downstream or upstream, depending on the subresonant or superresonant conditions. The influence of the parameters that govern the meandering process is shown and the role of the fluid dynamic detail used to describe the morphodynamic problem is discussed. A numerical simulation of the river planimetry is also develope

    Semi-Parametric Drift and Diffusion Estimation for Multiscale Diffusions

    Full text link
    We consider the problem of statistical inference for the effective dynamics of multiscale diffusion processes with (at least) two widely separated characteristic time scales. More precisely, we seek to determine parameters in the effective equation describing the dynamics on the longer diffusive time scale, i.e. in a homogenization framework. We examine the case where both the drift and the diffusion coefficients in the effective dynamics are space-dependent and depend on multiple unknown parameters. It is known that classical estimators, such as Maximum Likelihood and Quadratic Variation of the Path Estimators, fail to obtain reasonable estimates for parameters in the effective dynamics when based on observations of the underlying multiscale diffusion. We propose a novel algorithm for estimating both the drift and diffusion coefficients in the effective dynamics based on a semi-parametric framework. We demonstrate by means of extensive numerical simulations of a number of selected examples that the algorithm performs well when applied to data from a multiscale diffusion. These examples also illustrate that the algorithm can be used effectively to obtain accurate and unbiased estimates.Comment: 32 pages, 10 figure

    Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow

    Full text link
    A unique pattern selection in the absolutely unstable regime of a driven, nonlinear, open-flow system is analyzed: The spatiotemporal structures of rotationally symmetric vortices that propagate downstream in the annulus of the rotating Taylor-Couette system due to an externally imposed axial through-flow are investigated for two different axial boundary conditions at the in- and outlet. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system's length. They do, however, depend on the axial boundary conditions, the driving rate of the inner cylinder and the through-flow rate. Our analysis of the amplitude equation shows that the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that one of linear front propagation. PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript

    Multiple Front Propagation Into Unstable States

    Full text link
    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page
    • 

    corecore