12 research outputs found

    Current status of the analytical validation of next generation sequencing applications for pharmacogenetic profiling

    No full text
    Background Analytical validity is a prerequisite to use a next generation sequencing (NGS)-based application as an in vitro diagnostic test or a companion diagnostic in clinical practice. Currently, in the United States and the European Union, the intended use of such NGS-based tests does not refer to guided drug therapy on the basis of pharmacogenetic profiling of drug metabolizing enzymes, although the value of pharmacogenetic testing has been reported. However, in research, a large variety of NGS-based tests are used and have been confirmed to be at least comparable to array-based testing. Methods and Results A systematic evaluation was performed screening and assessing published literature on analytical validation of NGS applications for pharmacogenetic profiling of CYP2C9, CYP2C19, CYP2D6, VKORC1 and/or UGT1A1. Although NGS applications are also increasingly used for implementation assessments in clinical practice, we show in the present systematic literature evaluation that published information on the current status of analytical validation of NGS applications targeting drug metabolizing enzymes is scarce. Furthermore, a comprehensive performance evaluation of whole exome and whole genome sequencing with the intended use for pharmacogenetic profiling has not been published so far. Conclusions A standard in reporting on analytical validation of NGS-based tests is not in place yet. Therefore, many relevant performance criteria are not addressed in published literature. For an appropriate analytical validation of an NGS-based qualitative test for pharmacogenetic profiling at least accuracy, precision, limit of detection and specificity should be addressed to facilitate the implementation of such tests in clinical use

    Cytogenetic and Biochemical Genetic Techniques for Personalized Drug Therapy in Europe

    No full text
    For many authorized drugs, accumulating scientific evidence supports testing for predictive biomarkers to apply personalized therapy and support preventive measures regarding adverse drug reactions and treatment failure. Here, we review cytogenetic and biochemical genetic testing methods that are available to guide therapy with drugs centrally approved in the European Union (EU). We identified several methods and combinations of techniques registered in the Genetic Testing Registry (GTR), which can be used to guide therapy with drugs for which pharmacogenomic-related information is provided in the European public assessment reports. Although this registry provides information on genetic tests offered worldwide, we identified limitations regarding standard techniques applied in clinical practice and the information on test validity rarely provided in the according sections

    Molecular Genetic Techniques in Biomarker Analysis Relevant for Drugs Centrally Approved in Europe

    No full text
    On the basis of scientific evidence, information on the option, recommendation or requirement to test for pharmacogenetic or pharmacogenomic biomarkers is incorporated in the Summary of Product Characteristics of an increasing number of drugs in Europe. A screening of the Genetic Testing Registry (GTR) showed that a variety of molecular genetic testing methods is currently offered worldwide in testing services with regard to according drugs and biomarkers. Thereby, among the methodology indicated in the screened GTR category ‘Molecular Genetics’, next-generation sequencing is applied for identification of the largest proportion of evaluated biomarkers that are relevant for therapeutic management of centrally approved drugs in Europe. However, sufficient information on regulatory clearances, clinical utility, analytical and clinical validity of applied methods is rarely provided

    Opsonic Antibodies to Enterococcus faecalis Strain 12030 Are Directed against Lipoteichoic Acid

    No full text
    A teichoic acid (TA)-like polysaccharide in Enterococcus faecalis has previously been shown to induce opsonic antibodies that protect against bacteremia after active and passive immunization. Here we present new data providing a corrected structure of the antigen and the epitope against which the opsonic antibodies are directed. Capsular polysaccharide isolated from E. faecalis strain 12030 by enzymatic digestion of peptidoglycan and chromatography (enzyme-TA) was compared with lipoteichoic acid (LTA) extracted using butanol and purified by hydrophobic-interaction chromatography (BuOH-LTA). Structural determinations were carried out by chemical analysis and nuclear magnetic resonance spectroscopy. Antibody specificity was assessed by enzyme-linked immunosorbent assay and the opsonophagocytosis assay. After alanine ester hydrolysis, there was structural identity between enzyme-TA and BuOH-LTA of the TA-parts of the two molecules. The basic enterococcal LTA structure was confirmed: 1,3-poly(glycerol phosphate) nonstoichiometrically substituted at position C-2 of the glycerol residues with d-Ala and kojibiose. We also detected a novel substituent at position C-2, [d-Ala→6]-α-d-Glcp-(1→2-[d-Ala→6]-α-d-Glcp-1→). Antiserum raised against enzyme-TA bound equally well to BuOH-LTA and dealanylated BuOH-LTA as to the originally described enzyme-TA antigen. BuOH-LTA was a potent inhibitor of opsonophagocytic killing by the antiserum to enzyme-TA. Immunization with antibiotic-killed whole bacterial cells did not induce a significant proportion of antibodies directed against alanylated epitopes on the TA, and opsonic activity was inhibited completely by both alanylated and dealanylated BuOH-LTA. In summary, the E. faecalis strain 12030 enzyme-TA is structurally and immunologically identical to dealanylated LTA. Opsonic antibodies to E. faecalis 12030 are directed predominantly to nonalanylated epitopes on the LTA molecule

    Evaluation of the EMPAR study population on the basis of metabolic phenotypes of selected pharmacogenes

    No full text
    The impact of genetic variability of pharmacogenes as a possible risk factor for adverse drug reactions is elucidated in the EMPAR (Einfluss metabolischer Profile auf die Arzneimitteltherapiesicherheit in der Routineversorgung/English: influence of metabolic profiles on the safety of drug therapy in routine care) study. EMPAR evaluates possible associations of pharmacogenetically predicted metabolic profiles relevant for the metabolism of frequently prescribed cardiovascular drugs. Based on a German study population of 10,748 participants providing access to healthcare claims data and DNA samples for pharmacogenetic assessment, first analyses were performed and evaluated. The aim of this first evaluation was the characterization of the study population with regard to general parameters such as age, gender, comorbidity, and polypharmacy at baseline (baseline year) as well as important combinations of cardiovascular drugs with relevant genetic variants and predicted metabolic phenotypes. The study was registered in the German Clinical Trials Register (DRKS) on July 6, 2018 (DRKS00013909)

    Immune Sensing of Synthetic, Bacterial, and Protozoan RNA by Toll-like Receptor 8 Requires Coordinated Processing by RNase T2 and RNase 2

    No full text
    Human toll-like receptor 8 (TLR8) activation induces a potent T helper-1 (Th1) cell response critical for defense against intracellular pathogens, including protozoa. The receptor harbors two distinct binding sites, uridine and di- and/or trinucleotides, but the RNases upstream of TLR8 remain poorly characterized. We identified two endolysosomal endoribonucleases, RNase T2 and RNase 2, that act synergistically to release uridine from oligoribonucleotides. RNase T2 cleaves preferentially before, and RNase 2 after, uridines. Live bacteria, P. falciparum-infected red blood cells, purified pathogen RNA, and synthetic oligoribonucleotides all required RNase 2 and T2 processing to activate TLR8. Uridine supplementation restored RNA recognition in RNASE2(-/-) or RNASET2(-/-) but not RNASE2(-/-) RNASET2(-/-) cells. Primary immune cells from RNase T2-hypomorphic patients lacked a response to bacterial RNA but responded robustly to small-molecule TLR8 ligands. Our data identify an essential function of RNase T2 and RNase 2 upstream of TLR8 and provide insight into TLR8 activation

    Dynamic risk assessment to improve quality of care in patients with atrial fibrillation:the 7th AFNET/EHRAConsensus Conference

    Get PDF
    Aims The risk of developing atrial fibrillation (AF) and its complications continues to increase, despite good progress in preventing AF-related strokes. Methods and results This article summarizes the outcomes of the 7th Consensus Conference of the Atrial Fibrillation NETwork (AFNET) and the European Heart Rhythm Association (EHRA) held in Lisbon in March 2019. Sixty-five international AF specialists met to present new data and find consensus on pressing issues in AF prevention, management and future research to improve care for patients with AF and prevent AF-related complications. This article is the main outcome of an interactive, iterative discussion between breakout specialist groups and the meeting plenary. AF patients have dynamic risk profiles requiring repeated assessment and risk-based therapy stratification to optimize quality of care. Interrogation of deeply phenotyped datasets with outcomes will lead to a better understanding of the cardiac and systemic effects of AF, interacting with comorbidities and predisposing factors, enabling stratified therapy. New proposals include an algorithm for the acute management of patients with AF and heart failure, a call for a refined, data-driven assessment of stroke risk, suggestions for anticoagulation use in special populations, and a call for rhythm control therapy selection based on risk of AF recurrence. Conclusion The remaining morbidity and mortality in patients with AF needs better characterization. Likely drivers of the remaining AF-related problems are AF burden, potentially treatable by rhythm control therapy, and concomitant conditions, potentially treatable by treating these conditions. Identifying the drivers of AF-related complications holds promise for stratified therapy
    corecore