139 research outputs found

    Electrical Detection of Coherent Nuclear Spin Oscillations in Phosphorus-Doped Silicon Using Pulsed ENDOR

    Full text link
    We demonstrate the electrical detection of pulsed X-band Electron Nuclear Double Resonance (ENDOR) in phosphorus-doped silicon at 5\,K. A pulse sequence analogous to Davies ENDOR in conventional electron spin resonance is used to measure the nuclear spin transition frequencies of the 31^{31}P nuclear spins, where the 31^{31}P electron spins are detected electrically via spin-dependent transitions through Si/SiO2_2 interface states, thus not relying on a polarization of the electron spin system. In addition, the electrical detection of coherent nuclear spin oscillations is shown, demonstrating the feasibility to electrically read out the spin states of possible nuclear spin qubits.Comment: 5 pages, 3 figure

    Electromechanically induced absorption in a circuit nano-electromechanical system

    Full text link
    A detailed analysis of electromechanically induced absorption (EMIA) in a circuit nano-electromechanical hybrid system consisting of a superconducting microwave resonator coupled to a nanomechanical beam is presented. By performing two-tone spectroscopy experiments we have studied EMIA as a function of the drive power over a wide range of drive and probe tone detunings. We find good quantitative agreement between experiment and theoretical modeling based on the Hamiltonian formulation of a generic electromechanical system. We show that the absorption of microwave signals in an extremely narrow frequency band (\Delta\omega/2\pi <5 Hz) around the cavity resonance of about 6 GHz can be adjusted over a range of more than 25 dB on varying the drive tone power by a factor of two. Possible applications of this phenomenon include notch filters to cut out extremely narrow frequency bands (< Hz) of a much broader band of the order of MHz defined by the resonance width of the microwave cavity. The amount of absorption as well as the filtered frequency is tunable over the full width of the microwave resonance by adjusting the power and frequency of the drive field. At high drive power we observe parametric microwave amplification with the nanomechanical resonator. Due to the very low loss rate of the nanomechanical beam the drive power range for parametric amplification is narrow, since the beam rapidly starts to perform self-oscillations.Comment: 16 pages, 5 figure
    • …
    corecore