39 research outputs found
Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals
Younger individuals are more prone to develop cancer upon ionizing radiation (IR) exposure. Radiation-induced tumors are associated with inefficient repair of IR-induced DNA damage and genome instability. Phosphorylation of histone H2AX (γ-H2AX) is the initial event in repair of IR-induced DNA damage on the chromatin flanking the DNA strand breaks. This step is crucially important for the repair of DNA strand breaks and for the maintenance of genome stability. We studied the molecular underpinnings of the age-related IR effects using an animal model. By assaying for IR-induced γ-H2AX foci we analyzed the induction and repair of the DNA strand breaks in spleen, thymus, liver, lung, kidney, cerebellum, hippocampus, frontal cortex and olfactory bulb of 7, 14, 24, 30 and 45 days old male and female mice as a function of age. We demonstrate that tissues of younger animals are much more susceptible to IR-induced DNA damage. Younger animals exhibited higher levels of γ-H2AX formation which partially correlated with cellular proliferation and expression of DNA repair proteins. Induction and persistence of γ-H2AX foci was the highest in lymphoid organs (thymus and spleen) of 7 and 14 day old mice. The lowest focal induction was seen in lung and brain of young animals. The mechanisms of cell and tissue-specificity of in vivo IR responses need to be further dissected. This study provides a roadmap for the future analyses of DNA damage and repair induction in young individuals
Peak grain forecasts for the US High Plains amid withering waters
Irrigated agriculture contributes 40% of total global food production. In the US High Plains, which produces more than 50 million tons per year of grain, as much as 90% of irrigation originates from groundwater resources, including the Ogallala aquifer. In parts of the High Plains, groundwater resources are being depleted so rapidly that they are considered nonrenewable, compromising food security. When groundwater becomes scarce, groundwater withdrawals peak, causing a subsequent peak in crop production. Previous descriptions of finite natural resource depletion have utilized the Hubbert curve. By coupling the dynamics of groundwater pumping, recharge, and crop production, Hubbert-like curves emerge, responding to the linked variations in groundwater pumping and grain production. On a state level, this approach predicted when groundwater withdrawal and grain production peaked and the lag between them. The lags increased with the adoption of efficient irrigation practices and higher recharge rates. Results indicate that, in Texas, withdrawals peaked in 1966, followed by a peak in grain production 9 y later. After better irrigation technologies were adopted, the lag increased to 15 y from 1997 to 2012. In Kansas, where these technologies were employed concurrently with the rise of irrigated grain production, this lag was predicted to be 24 y starting in 1994. In Nebraska, grain production is projected to continue rising through 2050 because of high recharge rates. While Texas and Nebraska had equal irrigated output in 1975, by 2050, it is projected that Nebraska will have almost 10 times the groundwater-based production of Texas
Naturally occurring and stress induced tubular structures from mammalian cells, a survival mechanism
Performance of the Continuous Flow Diffusion Chambers
A brief comparative description is made of the five continuous flow chambers which participated in the Workshop. Overall, comparisons for the various types of experiments - monodisperse, polydisperse and ambient aerosol - showed agreement among these chambers to within 15% in most cases.-from Author
Relationships between water quality parameters and ectocommensal ciliates on prawns (Penaeus japonicus Bate) in aquaculture
Prawns, Penaeus japonicus (Bate), cultured in two ponds were examined microscopically for the presence of ectocommensal ciliates on their gills and water quality parameters measured. Positive correlations were found between: temperature and BOD; temperature and nitrate; pH and salinity; salinity and COD; and turbidity and ortho-phosphate. Negative correlations occurred between: temperature and DO; DO and BOD; and BOD and COD. Differences existed between the ponds for correlations associated with turbidity and algal density, possibly due to the differing pond bottoms. Ciliates in the genera Cothurnia, Zoothamnium, Acineta, Ephelota and Lagenophrys were observed, with the first two dominating on 96% of the prawns examined. As the water quality decreased the numbers of Zoothamnium increased and the numbers of Cothurnia decreased
Anti-Inflammatory Effects of Serotonin Receptor and Transient Receptor Potential Channel Ligands in Human Small Intestinal Epithelial Cells
Intestinal inflammation and dysbiosis can lead to inflammatory bowel diseases (IBD) and systemic inflammation, affecting multiple organs. Developing novel anti-inflammatory therapeutics is crucial for preventing IBD progression. Serotonin receptor type 2A (5-HT2A) ligands, including psilocybin (Psi), 4-Acetoxy-N,N-dimethyltryptamine (4-AcO-DMT), and ketanserin (Ket), along with transient receptor potential (TRP) channel ligands like capsaicin (Cap), curcumin (Cur), and eugenol (Eug), show promise as anti-inflammatory agents. In this study, we investigated the cytotoxic and anti-inflammatory effects of Psi, 4-AcO-DMT, Ket, Cap, Cur, and Eug on human small intestinal epithelial cells (HSEIC). HSEIC were exposed to tumor necrosis factor (TNF)-α and interferon (IFN)-γ for 24 h to induce an inflammatory response, followed by treatment with each compound at varying doses (0–800 μM) for 24 to 96 h. The cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and protein expression by Western blot (WB) analysis. As single treatments, Psi (40 μM), Cur (0.5 μM), and Eug (50 μM) significantly reduced COX-2 levels without cytotoxic effects. When combined, Psi (40 μM) and Cur (0.5 μM) exhibited synergy, resulting in a substantial decrease in COX-2 protein levels (−28× fold change), although the reduction in IL-6 was less pronounced (−1.6× fold change). Psi (20 μM) and Eug (25 μM) demonstrated the most favorable outcomes, with significant decreases in COX-2 (−19× fold change) and IL-6 (−10× fold change) protein levels. Moreover, the combination of Psi and Eug did not induce cytotoxic effects in vitro at any tested doses. This study is the first to explore the anti-inflammatory potential of psilocybin and 4-AcO-DMT in the intestines while highlighting the potential for synergy between the 5-HT2A and TRP channel ligands, specifically Psi and Eug, in alleviating the TNF-α/IFN-γ-induced inflammatory response in HSEIC. Further investigations should evaluate if the Psi and Eug combination has the therapeutic potential to treat IBD in vivo
GNC and CGA1 modulate chlorophyll biosynthesis and glutamate synthase (GLU1/Fd-GOGAT) expression in Arabidopsis.
Chloroplast development is an important determinant of plant productivity and is controlled by environmental factors including amounts of light and nitrogen as well as internal phytohormones including cytokinins and gibberellins (GA). The paralog GATA transcription factors GNC and CGA1/GNL up-regulated by light, nitrogen and cytokinin while also being repressed by GA signaling. Modifying the expression of these genes has previously been shown to influence chlorophyll content in Arabidopsis while also altering aspects of germination, elongation growth and flowering time. In this work, we also use transgenic lines to demonstrate that GNC and CGA1 exhibit a partially redundant control over chlorophyll biosynthesis. We provide novel evidence that GNC and CGA1 influence both chloroplast number and leaf starch in proportion to their transcript level. GNC and CGA1 were found to modify the expression of chloroplast localized GLUTAMATE SYNTHASE (GLU1/Fd-GOGAT), which is the primary factor controlling nitrogen assimilation in green tissue. Altering GNC and CGA1 expression was also found to modulate the expression of important chlorophyll biosynthesis genes (GUN4, HEMA1, PORB, and PORC). As previously demonstrated, the CGA1 transgenic plants demonstrated significantly altered timing to a number of developmental events including germination, leaf production, flowering time and senescence. In contrast, the GNC transgenic lines we analyzed maintain relatively normal growth phenotypes outside of differences in chloroplast development. Despite some evidence for partial divergence, results indicate that regulation of both GNC and CGA1 by light, nitrogen, cytokinin, and GA acts to modulate nitrogen assimilation, chloroplast development and starch production. Understanding the mechanisms controlling these processes is important for agricultural biotechnology