105 research outputs found
Effects of Antibiotics on the Growth and Physiology of Chlorophytes, Cyanobacteria, and a Diatom
The occurrence of antibiotics in surface waters has been reported worldwide with concentrations ranging from ng Lâ1 to low ”g Lâ1 levels. During environmental risk assessments, effects of antibiotics on algal species are assessed using standard test protocols (e.g., the OECD 201 guideline), where the cell number endpoint is used as a surrogate for growth. However, the use of photosynthetic related endpoints, such as oxygen evolution rate, and the assessment of effects on algal pigments could help to inform our understanding of the impacts of antibiotics on algal species. This study explored the effects of three major usage antibiotics (tylosin, lincomycin, and trimethoprim) on the growth and physiology of two chlorophytes (Desmodesmus subspicatus and Pseudokirchneriella subcapitata), a cyanobacteria (Anabaena flos-aquae), and a diatom (Navicula pelliculosa) using a battery of parameters, including cell density, oxygen evolution rate, total chlorophyll content, carotenoids, and the irradianceâphotosynthesis relationship. The results indicated that photosynthesis of chlorophytes was a more sensitive endpoint than growth (i.e., EC50 derived based on the effects of tylosin on the growth of D. subspicatus was 38.27 ”mol Lâ1 compared with an EC50 of 17.6 ”mol Lâ1 based on photosynthetic rate), but the situation was reversed when testing cyanobacteria and the diatom (i.e., EC50 derived based on the effects of tylosin on the growth of A. flos-aquae was 0.06 ”mol Lâ1; EC50 0.33 ”mol Lâ1 based on photosynthetic rate). The pigment contents of algal cells were affected by the three antibiotics for D. subspicatus. However, in some cases, pigment content was stimulated for P. subcapitata, N. pelliculosa, and A. flos-aquae. The light utilization efficiency of chlorophytes and diatom was decreased markedly in the presence of antibiotics. The results demonstrated that the integration of these additional endpoints into existing standardised protocols could provide useful insights into the impacts of antibiotics on algal species
Heterogeneous treatment effects of therapeutic-dose heparin in patients hospitalized for COVID-19
Importance Randomized clinical trials (RCTs) of therapeutic-dose heparin in patients hospitalized with COVID-19 produced conflicting results, possibly due to heterogeneity of treatment effect (HTE) across individuals. Better understanding of HTE could facilitate individualized clinical decision-making. Objective To evaluate HTE of therapeutic-dose heparin for patients hospitalized for COVID-19 and to compare approaches to assessing HTE. Design, Setting, and Participants Exploratory analysis of a multiplatform adaptive RCT of therapeutic-dose heparin vs usual care pharmacologic thromboprophylaxis in 3320 patients hospitalized for COVID-19 enrolled in North America, South America, Europe, Asia, and Australia between April 2020 and January 2021. Heterogeneity of treatment effect was assessed 3 ways: using (1) conventional subgroup analyses of baseline characteristics, (2) a multivariable outcome prediction model (risk-based approach), and (3) a multivariable causal forest model (effect-based approach). Analyses primarily used bayesian statistics, consistent with the original trial. Exposures Participants were randomized to therapeutic-dose heparin or usual care pharmacologic thromboprophylaxis. Main Outcomes and Measures Organ supportâfree days, assigning a value of â1 to those who died in the hospital and the number of days free of cardiovascular or respiratory organ support up to day 21 for those who survived to hospital discharge; and hospital survival. Results Baseline demographic characteristics were similar between patients randomized to therapeutic-dose heparin or usual care (median age, 60 years; 38% female; 32% known non-White race; 45% Hispanic). In the overall multiplatform RCT population, therapeutic-dose heparin was not associated with an increase in organ supportâfree days (median value for the posterior distribution of the OR, 1.05; 95% credible interval, 0.91-1.22). In conventional subgroup analyses, the effect of therapeutic-dose heparin on organ supportâfree days differed between patients requiring organ support at baseline or not (median OR, 0.85 vs 1.30; posterior probability of difference in OR, 99.8%), between females and males (median OR, 0.87 vs 1.16; posterior probability of difference in OR, 96.4%), and between patients with lower body mass index (BMI 90% for all comparisons). In risk-based analysis, patients at lowest risk of poor outcome had the highest propensity for benefit from heparin (lowest risk decile: posterior probability of OR >1, 92%) while those at highest risk were most likely to be harmed (highest risk decile: posterior probability of OR <1, 87%). In effect-based analysis, a subset of patients identified at high risk of harm (Pâ=â.05 for difference in treatment effect) tended to have high BMI and were more likely to require organ support at baseline. Conclusions and Relevance Among patients hospitalized for COVID-19, the effect of therapeutic-dose heparin was heterogeneous. In all 3 approaches to assessing HTE, heparin was more likely to be beneficial in those who were less severely ill at presentation or had lower BMI and more likely to be harmful in sicker patients and those with higher BMI. The findings illustrate the importance of considering HTE in the design and analysis of RCTs. Trial Registration ClinicalTrials.gov Identifiers: NCT02735707, NCT04505774, NCT04359277, NCT0437258
Lattice Surface Solitons
It is theoretically shown that nonlinear surface-waves are possible in optical lattices. Such solitons can exist at the interface between two different semi-infinite 1D waveguide arrays and also at the boundaries of a 2D lattice. © 2006 Optical Society of America
Generation of poikiloderma with neutropenia (PN) induced pluripotent stem cells (iPSCs)
Poikiloderma with neutropenia (PN, Clericuzio-type poikiloderma with neutropenia) is a rare autosomal recessive disorder caused by biallelic mutations in the USB1 gene (Alias C16orf57 and MPN1). To date, there have been only 37 reported cases worldwide of this disorder that presents with neutropenia, early onset poikiloderma, respiratory infections, palmo-plantar hyperkeratosis, and skeletal defects. Here we described the generation of human induced pluripotent stem cell lines (PN1 and PN2) from the peripheral blood of a 1-year-old patient using the dox-inducible STEMCCA vector. This patient presented with bacteremia, pneumonia, and neutropenia. Analysis of bone marrow demonstrated normal cellularity with trilineage hematopoiesis and neutropenia
The negative impact of Wnt signaling on megakaryocyte and primitive erythroid progenitors derived from human embryonic stem cells
AbstractThe Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs. The first hematopoietic progenitor cells in the human ESC system express the pan-hematopoietic marker CD41 and the erythrocyte marker, glycophorin A or CD235. We have developed a novel serum-free, feeder-free, adherent differentiation system that can efficiently generate large numbers of CD41+CD235+ cells. We demonstrate that this cell population contains progenitors not just for primitive erythroid and megakaryocyte cells but for the myeloid lineage as well and term this population the primitive common myeloid progenitor (CMP). Treatment of mesoderm-specified cells with Wnt3a led to a loss of hematopoietic colony-forming ability while the inhibition of canonical Wnt signaling with DKK1 led to an increase in the number of primitive CMPs. Canonical Wnt signaling also inhibits the expansion and/or survival of primitive erythrocytes and megakaryocytes, but not myeloid cells, derived from this progenitor population. These findings are in contrast to the role of Wnt signaling during mouse ESC differentiation and demonstrate the importance of the human ESC system in studying species-specific differences in development
Targeting GM-CSF in COVID-19 Pneumonia: Rationale and Strategies
COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-\u3b3, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor \u3b1, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial
- âŠ