200 research outputs found

    SARS coronavirus-2 vaccines:options and state-of-the-art

    Get PDF
    Since the first reports in mid-January of a serious new viral respiratory infection, COVID-19, and the identification of SARS-CoV-2 as the cause of this disease, researchers work intensely on developing a vaccine that can protect individuals against serious disease and that can limit the spread of the virus. Vaccine developers are using a range of platform technologies to do this, each with advantages and disadvantages. Close to 30 vaccines are now in clinical testing. The first results are encouraging, but in order to properly assess the merits of the different vaccines, we must wait for the results of phase 3 trials. The first phase 3 trials have started in July 2020.</p

    Comparison of influenza-specific neutralizing antibody titers determined using different assay readouts and hemagglutination inhibition titers:good correlation but poor agreement

    Get PDF
    Determination of influenza-specific antibody titers is commonly done using the hemagglutination inhibition assay (HAI) and the viral microneutralization assay (MN). Both assays are characterized by high intra- and inter-laboratory variability. The HAI assay offers little opportunity for standardization. For the MN assay, variability might be due to the use of different assay protocols employing different readouts. We therefore aimed at investigating which of the MN assay readout methods currently in use would be the most suitable choice for a standardized MN assay that could serve as a substitute for the HAI assay. For this purpose, human serum samples were tested for the presence of influenza specific neutralizing antibodies against A/California/7/09 H1N1 (49 sera) or A/Hong Kong/4801/2014 (50 sera) using four different infection readout methods for the MN assay (cytopathic effect, hemagglutination, ELISA, RT qPCR) and using the HAI assay. The results were compared by correlation analysis and by determining the level of agreement before and after normalization to a standard serum. Titers as measured by the 4 MN assay readouts showed good correlation, with high Person's r for most comparisons. However, agreement between nominal titers varied with readouts compared and virus strain used. In addition, Pearson's correlation of MN titers with HAI titers was high but agreement of nominal titers was moderate and the average difference between the readings of two assays (bias) was virus strain-dependent. Normalization to a standard serum did not result in better agreement of assay results. Our study demonstrates that different MN readouts result in nominally different antibody titers. Accordingly, the use of a common and standardized MN assay protocol will be crucial to minimize inter-laboratory variability. Based on reproducibility, cost effectiveness and unbiased assessment of results we elected the MN assay with ELISA readout as most suitable for a possible replacement of the HAI assay

    Comparison of media for a human peripheral blood mononuclear cell-based in vitro vaccine evaluation system.

    Get PDF
    PURPOSE: Human peripheral blood mononuclear cell (PBMC)-based in vitro systems can be of great value in the development and assessment of vaccines but require the right medium for optimal performance of the different cell types present. Here, we compare three commonly used media for their capacity to support innate and adaptive immune responses evoked in PBMCs by Toll-like receptor (TLR) ligands and whole inactivated virus (WIV) influenza vaccine. MATERIALS AND METHODS: Human PBMCs were cultured for different periods of time in Roswell Park Memorial Institute (RPMI), Dulbecco's minimal essential medium (DMEM), or Iscove's modified DMEM (IMDM) supplemented with 10% fetal calf serum. The viability of the cells was monitored and their responses to TLR ligands and WIV were assessed.RESULTS: With increasing days of incubation, the viability of PBMCs cultured in RPMI or IMDM was slightly higher than that of cells cultured in DMEM. Upon exposure of the PBMCs to TLR ligands and WIV, RPMI was superior to the other two media in terms of supporting the expression of genes related to innate immunity, such as the TLR adaptor protein gene MyD88 (myeloid differentiation factor 88), the interferon (IFN)-stimulated genes MxA (myxovirus resistance protein 1) and ISG56 (interferon-stimulated gene 56), and the leukocyte recruitment chemokine gene MCP1 (monocyte chemoattractant protein-1). RPMI also performed best with regard to the activation of antigen-presenting cells. As for adaptive immunity, when stimulated with WIV, PBMCs cultured in RPMI or IMDM contained higher numbers of IFNγ-producing T cells and secreted more immunoglobulin G than PBMCs cultured in DMEM.CONCLUSION: Taken together, among the different media assessed, RPMI was identified as the optimal medium for a human PBMC-based in vitro vaccine evaluation system. </p

    Comparison of media for a human peripheral blood mononuclear cell-based in vitro vaccine evaluation system.

    Get PDF
    PURPOSE: Human peripheral blood mononuclear cell (PBMC)-based in vitro systems can be of great value in the development and assessment of vaccines but require the right medium for optimal performance of the different cell types present. Here, we compare three commonly used media for their capacity to support innate and adaptive immune responses evoked in PBMCs by Toll-like receptor (TLR) ligands and whole inactivated virus (WIV) influenza vaccine. MATERIALS AND METHODS: Human PBMCs were cultured for different periods of time in Roswell Park Memorial Institute (RPMI), Dulbecco's minimal essential medium (DMEM), or Iscove's modified DMEM (IMDM) supplemented with 10% fetal calf serum. The viability of the cells was monitored and their responses to TLR ligands and WIV were assessed.RESULTS: With increasing days of incubation, the viability of PBMCs cultured in RPMI or IMDM was slightly higher than that of cells cultured in DMEM. Upon exposure of the PBMCs to TLR ligands and WIV, RPMI was superior to the other two media in terms of supporting the expression of genes related to innate immunity, such as the TLR adaptor protein gene MyD88 (myeloid differentiation factor 88), the interferon (IFN)-stimulated genes MxA (myxovirus resistance protein 1) and ISG56 (interferon-stimulated gene 56), and the leukocyte recruitment chemokine gene MCP1 (monocyte chemoattractant protein-1). RPMI also performed best with regard to the activation of antigen-presenting cells. As for adaptive immunity, when stimulated with WIV, PBMCs cultured in RPMI or IMDM contained higher numbers of IFNγ-producing T cells and secreted more immunoglobulin G than PBMCs cultured in DMEM.CONCLUSION: Taken together, among the different media assessed, RPMI was identified as the optimal medium for a human PBMC-based in vitro vaccine evaluation system. </p

    In vitro assessment of tick-borne encephalitis vaccine:Suitable human cell platforms and potential biomarkers

    Get PDF
    Tick-borne encephalitis (TBE) virus causes a severe disease that can lead to permanent neurological complications. The whole inactivated TBE vaccine is highly effective, as proven by high seroconversion rates and near eradication of the disease in countries where vaccination programs have been implemented. TBE vaccine potency testing currently requires the use of in vivo methods that present issues of reproducibility as well as animal discomfort. As an alternative, public and private entities are currently exploring a batch-to-batch consistency approach which would demonstrate conformity of a newly produced vaccine batch with a batch with proven in vivo efficacy with respect to a range of in vitro measurable quality parameters. For the identification of a suitable cellular platform to be used in a panel of in vitro batch-to-batch assessments for the TBE vaccine, we exposed human cell-based systems, both of primary origin and cell line-derived, to vaccine formulations of high and low quality. Following stimulation, cell responses were evaluated by assessing the expression of selected genes by qPCR. Our findings show that the expression of interferon-stimulated genes differed after treatment with non-adjuvanted vaccine batches of different quality in peripheral blood mononuclear cells (PBMCs) and in monocyte-derived dendritic cells, but not in monocyte-free PBMC suspensions nor in cell line-derived immune cells. These results indicate suitable platforms and potential biomarkers for a cell-based assay that, together with other immunochemical analyses, could serve for batch-to-batch assessment of the TBE vaccine, reducing (and eventually replacing) in vivo methods for potency testing

    Influenza virosomes supplemented with GPI-0100 adjuvant:a potent vaccine formulation for antigen dose sparing

    Get PDF
    Adjuvants can stimulate vaccine-induced immune responses and can contribute decisively to antigen dose sparing when vaccine antigen production is limited, as for example during a pandemic influenza outbreak. We earlier showed that GPI-0100, a semi-synthetic saponin derivative with amphiphilic structure, significantly stimulates the immunogenicity and protective efficacy of influenza subunit vaccine administered via a systemic route. Here, we evaluated the adjuvant effect of GPI-0100 on a virosomal influenza vaccine formulation. In contrast to influenza subunit vaccine adjuvanted with GPI-0100, virosomal vaccine supplemented with the same dose of GPI-0100 provided full protection of mice against infection at the extremely low antigen dose of 2 x 8 ng hemagglutinin. Overall, adjuvanted virosomes elicited higher antibody and T-cell responses than did adjuvanted subunit vaccine. The enhanced immunogenicity of the GPI-0100-adjuvanted virosomes, particularly at low antigen doses, is possibly due to a physical association of the amphiphilic adjuvant with the virosomal membrane. These results show that a combination of GPI-0100 and a virosomal influenza vaccine formulation is highly immunogenic and allows the use of very low antigen doses without compromising the protective potential of the vaccine.</p
    • …
    corecore