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Abstract 

 

Adjuvants can stimulate vaccine-induced immune responses and can contribute decisively 

to antigen dose sparing when vaccine antigen production is limited, as for example during 

a pandemic influenza outbreak. We earlier showed that GPI-0100, a semi-synthetic 

saponin derivative with amphiphilic structure, significantly stimulates the 

immunogenicity and protective efficacy of influenza subunit vaccine administered via a 

systemic route. Here, we evaluated the adjuvant effect of GPI-0100 on a virosomal 

influenza vaccine formulation. In contrast to influenza subunit vaccine adjuvanted with 

GPI-0100, virosomal vaccine supplemented with the same dose of GPI-0100 provided full 

protection of mice against infection at the extremely low antigen dose of 2 x 8 ng 

hemagglutinin. Overall, adjuvanted virosomes elicited higher antibody and T cell 

responses than did adjuvanted subunit vaccine. The enhanced immunogenicity of the GPI-

0100-adjuvanted virosomes, particularly at low antigen doses, is possibly due to a 

physical association of the amphiphilic adjuvant with the virosomal membrane. These 

results show that a combination of GPI-0100 and a virosomal influenza vaccine 

formulation is highly immunogenic and allows the use of very low antigen doses without 

compromising the protective potential of the vaccine.  

 

Key words: influenza vaccine, GPI-0100, subunit, virosome  

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

 

For more than 60 years vaccination has been the primary strategy in the prevention of 

influenza virus infection [1-3]. Due to their low local reactogenicity, vaccines consisting 

of purified viral proteins, such as split or subunit vaccines, are currently preferred over 

whole inactivated virus (WIV) vaccines. Purified protein vaccines are as immunogenic as 

WIV vaccine in primed individuals. However, in unprimed subjects the immunogenicity 

of protein vaccines is relatively weak [3-5]. Vaccine immunogenicity can be enhanced by 

using adjuvant(s) which can boost immune responses against a specific antigen [6,7]. In 

addition, the use of adjuvants may allow antigen dose-sparing vaccination strategies 

which become very important in situations like pandemics in which vaccine demand may 

far exceed the available vaccine production capacity.  

 

Our earlier studies show that GPI-0100, a semi-synthetic derivative of saponin, is a 

promising candidate adjuvant for influenza subunit vaccine. In a mouse model, GPI-0100 

enhanced the antibody responses to intramuscularly injected subunit vaccine to a higher 

level than currently licensed adjuvants such as alum, MF59 or AS03 [8,9]. In addition, 

GPI-0100 effectively stimulated influenza-specific cellular immunity, which is crucial for 

immune memory formation and thus long-term protection. Remarkably, adjuvantation of 

subunit vaccine with GPI-0100 allowed a 25-fold reduction in hemagglutinin (HA) dose 

(down to 0.04 µg) without compromising the immunogenicity and protective capacity of 

the vaccine.  

 

Chemically, GPI-0100 is an amphiphilic molecule containing a triterpenoid backbone 

with sugar moieties and a fatty-acid side chain attached via the carboxyl group to one of 

the sugars [10,11]. The presence of this hydrophobic moiety gives the molecule an 

amphiphilic character and might enable physical association of GPI-0100 with 

membrane-containing antigen formulations thus further potentiating its immuno-

stimulating properties.  

 



Influenza virosomes are reconstituted viral membrane envelopes. Virosome production 

involves three steps: (1) solubilization of the virus membrane with a proper detergent, (2) 

removal of the virus core proteins and genetic material by ultracentrifugation and (3) 

reconstitution of the virus membrane by detergent extraction [12,13]. Influenza virosomes 

retain the structural and functional properties of the viral membrane envelope. Yet, the 

lack of viral genomes clears any concern for viral replication and infection. Functionally 

preserved virosomes can bind to cellular sialic acid receptors for hemagluttinin (HA), 

initiate receptor-mediated endocytosis and deliver encapsulated agents to the cytosol 

[12,14-16]. The virosomal HA is degraded in endosomes, resulting in MHC class II 

presentation and CD4+ T cell activation, which helps the development of CTL and B cell 

responses [12,16]. In addition, the repetitive arrangement of HA spikes on the virosome 

membrane can cross-link membrane-bound antibodies expressed on B cells and give 

strong activation signals to these cells [12,15,17]. Invivac® and InflexalV® are licensed 

virosomal influenza vaccines. Both vaccines have been shown to be well-tolerated and to 

induce immune responses as good as or even better than conventional inactivated 

influenza virus vaccines [18,19]. Importantly, unlike subunit vaccines, influenza 

virosomes provide a lipid membrane platform for physical association of amphiphilic 

adjuvants with the virosomal particle. This allows antigen-presenting cells to be activated 

by adjuvant and exposed to antigen at the same time. An earlier study in Balb/c mice 

showed that a single administration of influenza virosomes with a Toll-like receptor 2 

ligand incorporated in the membrane resulted in a 150-fold enhancement of IgG responses 

when compared to plain virosomes [15]. 

 

Here we evaluated the adjuvant effect of GPI-0100 on a virosomal influenza vaccine 

formulation as compared to a subunit vaccine formulation. To this end, mice were 

immunized intramuscularly (IM) with non-adjuvanted or GPI-0100-adjuvanted subunit or 

virosomal vaccine and immune responses were evaluated and the mice were challenged 

with a lethal dose of homologous virus.  Our data show that GPI-0100 enhanced the 

immunogenicity and protective capacity of influenza subunit and virosome vaccines to 

different extents. Overall, the adjuvanted virosomes elicited stronger humoral and cellular 

immunity than the adjuvanted subunit vaccine, especially at low antigen doses. Notably, 



only the adjuvanted virosomal, but not the subunit, vaccine remained fully protective at 

an antigen dose of 8 ng HA. We conclude that influenza virosomes admixed with GPI-

0100 provide a simple and yet potent influenza vaccine formulation especially with regard 

to antigen dose sparing. 

 

2. Materials and Methods 

 

2.1 GPI-0100 

GPI-0100 was purchased from Hawaii Biotech, Inc. (Aiea, HI, USA) as powder and was 

stored at 4 °C. The preparation and storage of GPI-0100 stock solution was described 

earlier [8]. 

 

2.2 Influenza virus and vaccines 

A stock of A/Puerto Rico/8/34 (H1N1) influenza virus (PR8), propagated on Madin–

Darby canine kidney (MDCK) cells, was kindly provided by Solvay Biologicals 

(currently Abbott Biologicals, Weesp, Netherlands). The virus was further propagated on 

embryonated chicken eggs, purified by sucrose gradient centrifugation, and the virus titer 

was determined by measuring the tissue-culture infectious dose 50 (TCID50) as previously 

described [8].  

 

Influenza virus was inactivated by β-propiolactone treatment followed by dialysis against 

HBS buffer (5 mM Hepes, 150 mM NaCl and 0.1 mM EDTA, pH 7.4) as described 

earlier [8]. The inactivated virus sample was processed to subunit vaccine using treatment 

with Tween 80 (0.6 mg/ml) and cetyltrimethylammonium bromide (CTAB, 3.0 mg/ml) 

followed by ultracentrifugation and detergent removal [8]. 

 

Virosomes were prepared from the inactivated influenza virus with 1,2-dihexanoyl-sn-

glycero-3-phosphocholine (DCPC), as described previously [20]. Briefly, inactivated PR8 

virus (1.5 μmol of viral phospholipid) was solubilized in 750 μl of 200 mM DCPC 

(Avanti Polar Lipids, Inc, Alabaster, AL, USA) in HBS buffer. The suspension was 

incubated on ice for 30 min and the nucleocapsid was removed from the preparation by 



ultracentrifugation. The DCPC was then removed by dialysis against HBS buffer 

overnight. The buffer was refreshed on the next day for another 4 hr of dialysis. 

Reconstituted virus membranes (virosomes) were separated from non-incorporated 

material on a discontinuous sucrose density gradient (10-50%, w/v) in HBS, in a SW55 

rotor at 33,000 rpm for 90 min. Subsequently, virosomes were dialyzed against HBS 

buffer to remove sucrose. Sterility of vaccine preparations was verified by plating on 

blood/agar plates and incubating for 24 hr at 37°C. 

 

The protein content of the subunit and the virosome vaccine was determined by a 

modified Lowry assay [21]. Hemagglutinin (HA) content was assumed to be equal to the 

total protein content since sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) proved that other proteins were present only in very minor amounts. 

Adjuvanted subunit or virosomal vaccines were prepared by mixing of the indicated 

amounts of antigen and GPI-0100 just before immunization. 

 

2.3 Animal handling 

The protocol for the animal experiments was approved by the Ethics Committee on 

Animal Research of the University of Groningen (Permit number: DEC 5896B and 

5896C).  Female Balb/c mice (Harlan, The Netherlands), aged 8–10 weeks, were grouped 

(n = 6 per group) and immunized IM with PR8 subunit or virosome vaccine alone or with 

GPI-0100 adjuvantation in a two-dose immunization regimen (day 0 and day 20). The 

amounts used are indicated in the Results section. Control mice were injected with HBS 

buffer. On day 27, mice were challenged by intranasal administration of 200 TCID50 PR8 

influenza virus in 50 μl of HBS buffer. Virus administration was carried out under 

isoflurane anesthesia to ensure deposition of the virus into the lungs. Mice were 

monitored twice a day at fixed time points for clinical signs of illness including weight 

loss, changes in behavior and appearance. Mice were bled and sacrificed on day 30. 

Serum samples were collected for ELISA assay. Spleens were harvested and splenocytes 

were used for ELISPOT assay. The lung lobes were collected in 1 ml PBS and the 

homogenized supernatants were stored at −80 °C freezer for lung virus titer detection. 

 



2.4 ELISA 

H1N1-specific antibody responses were determined by ELISA as described earlier [8]. 

Individual IgG titers were calculated as the 
10

log of the reciprocal of the sample dilution 

corresponding to an OD492 of 0.2. Individual IgG1 and IgG2a responses are given as 

concentration (μg/ml). 

 

2.5 Hemagglutination-inhibition (HAI) assay 

Serum samples were processed and subjected to HAI assay as earlier described [20]. 
2
log 

HAI titers for individual mice are presented. 

 

2.6 Elispot assays 

H1N1-specific IFN-γ and IL-4 responses were determined by Elispot assays as earlier 

described [8]. Numbers of influenza-specific IFNγ- or IL4-secreting cells per 500,000 

splenocytes from individual mice are given. 

 

2.7 Virus titration in lungs of challenged mice 

Virus titers were determined from lung homogenates as earlier described [8]. Results from 

individual mice are presented as 
10

log (virus titer per gram of lung tissue). 

 

2.8 Statistics 

The unpaired Student's t-test was used to determine if the differences in influenza-specific 

responses observed between groups of mice were significant. A p value of p < 0.05 was 

considered significant. 

 

3. Results  

 

3.1 Immunogenicity and protective capacity of influenza subunit or virosomal vaccine 

with or without GPI-0100  

Preliminary evaluation of influenza vaccine in different formulations was conducted at an 

antigen dose of 200 ng HA. Mice were immunized IM. twice on day 0 and 20 with 

subunit or virosomal vaccine alone or in the presence of 30 µg GPI-0100. One week after 



the second immunization, mice were challenged with homologous virus via the intranasal 

route. No significant weight loss was observed until sacrifice three days after challenge. 

Mock-immunized control mice developed an average lung virus titer of 10
6
 TCID50/g lung 

tissue (Figure 1A). The average titer was reduced by ≥ 4 logs in each of the immunized 

groups (p ≤ 0.0001 for all comparisons of mock-immunized and immunized groups). 

None of the mice immunized with plain subunit vaccine developed sterile immunity, 

while in 67% of the mice immunized with GPI-0100-adjuvanted subunit vaccine lung 

virus titers were below the detection limit. For virosomal vaccine, complete lung 

protection against virus growth was observed in 50% and 100% of the mice receiving 

plain virosomes and GPI-0100-adjuvanted virosomes respectively.  

 

We further analyzed HAI titers in serum samples collected from the mice described above. 

None of the mice that received plain influenza subunit vaccine developed a detectable 

serum HAI titer (Figure 1B). Only 1 out of the 6 mice receiving GPI-0100-adjuvanted 

subunit vaccine showed a detectable serum titer. On the other hand, influenza virosomes 

induced detectable HAI titers in 3 and 4 out of the 6 immunized mice for plain and GPI-

0100-adjuvanted vaccine, respectively. The average HAI titer induced by the adjuvanted 

virosomes was significantly higher than that induced by adjuvanted subunit vaccine (p= 

0.0304).  

 

3.2 Protective capacity of GPI-0100-adjuvanted influenza subunit or virosomal vaccine at 

a reduced antigen dose  

To gain better insight into possible differences between GPI-0100-adjuvanted subunit and 

virosomal vaccines, we repeated the challenge experiment using a lower dose of GPI-

0100 (15 µg) and titrating the antigen dose down from 200 to 8 ng. No significant weight 

loss was observed three days after virus challenge. On day 4 post challenge, the non-

immunized control mice all showed more than 10% of weight loss (Figure 2A). One out 

of the 6 mice immunized with adjuvanted low-dose (8 ng) subunit vaccine also 

demonstrated severe weight loss and two others lost ≥5% of weight. The rest of the 

immunized and challenged mice, however, showed no significant weight changes (except 

one animal in the group immunized with adjuvanted virosomes at 40 ng HA).  



 

All mice were sacrificed four days after challenge and virus titers were determined in the 

collected lung homogenates. The control mice developed an average lung virus titer of 

10
7.2

 TCID50/g lung tissue (Figure 2B). All mice that received adjuvanted vaccines 

containing more than 40 ng HA were completely or nearly completely protected 

fromvirus growth in the lungs regardless of the vaccine formulation used. At the lowest 

tested antigen dose of 8 ng HA, a significant difference in lung protection was observed 

between mice immunized with adjuvanted subunit or adjuvanted virosomal vaccine (p= 

0.0078). Though the lung virus titer in subunit-immunized mice was significantly reduced 

as compared to that in the control group (p=0.0096), only 2 out of the 6 immunized mice 

developed sterile immunity with lung virus titers below the detection limit. The other 

mice of the group, however, showed only partial or no protection. In contrast, GPI-0100-

adjuvanted virosomes provided full protection in all vaccinated mice even at the lowest 

antigen dose.  

 

3.3 Humoral immunogenicity of GPI-0100-adjuvanted subunit or virosomal vaccine at a 

reduced antigen dose  

Humoral immune responses elicited by GPI-0100-adjuvanted subunit or virosomal 

vaccines at different antigen doses were evaluated by performing H1N1-specific IgG 

ELISAs and HAI assays on serum samples collected from the mice described above under 

3.2. Pre-challenge serum samples collected on day 27 showed that GPI-0100-adjuvanted 

subunit and virosomal vaccine elicited comparable H1N1-specific IgG responses at an 

antigen dose of 200 ng HA (Figure 3A). However, at an antigen dose of 40 ng there was a 

trend towards higher IgG responses in the virosome group as compared to those in the 

subunit group. This trend became statistically significant at the lowest antigen dose of 8 

ng (p = 0.0091).  

 

HAI responses were measured in post-challenge serum samples collected upon sacrifice 

of the animals. Titers were clearly antigen dose-dependent (Figure 3B). All mice that 

received 200 ng HA + GPI-0100 developed high HAI titers. At an antigen dose of 40 ng 

HA, measurable HAI titers were detected in 3 out of 6 or 5 out of 6 mice receiving the 



adjuvanted subunit or virosomal vaccine, respectively. For these two antigen doses, HAI 

titers elicited by the virosomal vaccine were significantly higher than those elicited by the 

subunit vaccine (p= 0.0128 and 0.0026, respectively). At 8 ng HA, HAI titers elicited by 

either of the vaccines were low. Only 1 of the subunit-immunized mice and 3 of the 

virosome-immunized mice developed detectable HAI titers. Thus, overall GPI-0100-

adjuvanted virosomes induced higher levels of influenza-specific antibodies than GPI-

0100-adjuvanted subunit vaccine. 

 

3.4 Phenotype of the antibody response elicited by GPI-0100-adjuvanted subunit and 

virosomal vaccine 

We further analyzed the phenotype of the antibody response by performing H1N1-

specific IgG1 and IgG2a ELISAs on the pre-challenge serum samples mentioned in 3.3. 

GPI-0100-adjuvanted subunit and virosomal vaccine elicited similar serum IgG1 

responses at all antigen doses tested (Figure 4A). On the other hand, the vaccine 

formulation did play a role in the induction of serum IgG2a (Figure 4B). While at higher 

antigen doses, the adjuvanted subunit vaccine was equally effective as the virosomal 

vaccine in induction of IgG2a, only the adjuvanted virosomes readily induced IgG2a at 

the low antigen dose of 8 ng HA, resulting in a significant difference between these two 

groups (p=0.0289). Nevertheless, for both formulations a Th2-oriented antibody response 

predominated since high levels of IgG1 were elicited at any given antigen dose. 

 

3.5 Cellular immunity of GPI-0100-adjuvanted subunit or virosomal vaccine at different 

antigen doses 

We next evaluated H1N1-specific cellular immunity elicited by the GPI-0100-adjuvanted 

vaccines by performing Elispot assays on post-challenge splenocytes collected upon 

sacrifice. H1N1-specific IFN-γ responses elicited by the adjuvanted subunit vaccines were 

generally very weak or undetectable (Figure 5A). The adjuvanted virosomes, on the other 

hand, effectively induced H1N1-specific IFN-γ responses at an antigen dose of 8 and 40 

ng HA, with an average of 69 and 136 IFN-γ-secreting cells per 5x10
5
 splenocytes, 

respectively. Unexpectedly, H1N1-specific IFN-γ-secreting cells were barely induced in 

the adjuvanted 200 ng HA virosome group. In the animal groups that received 40 ng HA, 



a trend towards higher IFN-γ responses for the adjuvanted virosomes as compared to the 

subunit vaccine was observed. This trend reached statistical significance at 8 ng HA (p= 

0.0016). All of the vaccines tested readily induced H1N1-specific IL-4 responses after 

challenge. A strong antigen dose-dependent IL-4 response was observed for GPI-0100-

adjuvanted subunit vaccine (Figure 5B). At a high antigen dose of 200 ng HA, the 

adjuvanted subunit vaccine elicited significantly stronger IL-4 responses than did the 

adjuvanted virosomes (p=0.0023). At lower antigen doses, however, the adjuvanted 

virosomes elicited significantly stronger IL-4 responses than the adjuvanted subunit 

vaccine (p=0.0436 and 0.0094 for a comparison at 8 and 40 ng HA, respectively). Notably, 

Th1-skewed cellular immunity, predominated by IFN-γ-producing T cells, was observed 

only in mice that received GPI-0100-adjuvanted virosomes at an antigen dose of 40 ng 

HA or lower. Thus, the adjuvanted virosomes elicited a stronger and more Th1-oriented 

cellular immune response than did the adjuvanted subunits at a low antigen dose. 

 

4. Discussion 

 

In an attempt to further improve the immunogenicity of influenza vaccines we compared 

in this study the effects of GPI-0100 adjuvantion on a subunit and a virosomal influenza 

vaccine formulation. Due to its amphiphilic nature GPI-0100 can potentially incorporate 

into virosomal membranes thus forming particles containing both antigen and adjuvant. In 

the absence of GPI-0100 subunit and virosomal vaccines induced similar levels of 

antibodies and reduction in lung virus titer after challenge. GPI-0100 stimulated the 

protective efficacy of both formulations but to different extents. At limiting amounts of 

antigen (8 ng HA) only the adjuvanted virosomal vaccine could completely prevent 

infection. Furthermore, the adjuvanted virosomes induced higher antibody titers and 

higher numbers of cytokine-producing T cells than adjuvanted subunit vaccine at antigen 

doses of 40 ng or lower,. These differences were not detected when an antigen dose of 

200 ng was used, presumably because at this relatively high dose of antigen, the nature of 

the vaccine formulation becomes less critical. Thus, overall GPI-0100-adjuvanted 

virosomes were superior to adjuvanted subunit vaccine, particularly at low antigen doses.  

 



Exploitation of the amphiphilic nature of saponin adjuvants to develop immunogenic 

vaccine delivery systems has been reported earlier. Immune-stimulating complexes 

(ISCOMs), composed of saponin, phospholipid, cholesterol and incorporated antigen are 

among the most potent saponin-containing formulations identified [24,25]. The ISCOM 

formulation contains cage-like particles approximately 40 nm in diameter. A challenge 

study in mice showed that subcutaneous delivery of a single dose of ISCOMs consisting 

of the saponin ISCOPREP
TM

703 and PR8 antigen protects mice from weight loss and 

death at an antigen dose of 0.5 µg HA [26]. Another study in mice using ISCOMs 

containing the saponin Quil A and the antigen from A/Taiwan/1/86 (H1N1) virus 

demonstrated that two subcutaneous immunizations with an antigen dose of 0.5 µg HA 

were required to provide complete lung protection against homologous challenge [27]. 

Here we show that mice receiving two intramuscular immunizations of GPI-0100-

adjuvanted PR8 virosomes were protected from weight loss and lung infection upon 

challenge even at the very low antigen dose of 8 ng HA. Hence, GPI-0100-adjuvanted 

virosomes provide a formulation which is relatively simple, exploits a marketed influenza 

vaccine formulation, is easy to produce, and at the same time performs as good as or even 

better than influenza ISCOMs.  

 

Influenza virosomes are 100-200 nm particles composed of the membrane lipids and spike 

proteins of influenza virus. Unlike influenza virus-like particles (VLPs), which are 

produced by infecting cells lines with genetically modified viral vectors containing 

influenza virus genes, influenza virosomes are produced from cultured influenza viruses 

with or without addition of extra lipids [13,17,28,29]. The safety and efficacy of 

virosomal influenza vaccines has been demonstrated to be as good as or even better than 

that of split or subunit vaccines in children, adults and healthy elderly or those with a 

medical condition [19,30-34]. Importantly, due to their membranous nature, virosomal 

vaccines provide a platform for the incorporation of lipophilic or amphiphilic adjuvants 

[35-40]. Such an integration of stimulatory signals from both antigen and adjuvant is 

expected to elicit robust immune responses [41,42].  

 



Adjuvanted virosomal vaccines can be produced by different methods. One way is to 

combine lipophilic/amphiphilic adjuvant and virosomal antigen during the process of 

virosome reconstitution. The adjuvant is mixed with solubilized viral membranes in the 

presence of solubilization agent. After incubation, the mixture is dialyzed against buffer 

for the removal of solubilization agent and formation of virosomes. Using this method, 

respiratory syncytial virus (RSV) virosomes with incorporated P3CSK4 or MPLA (TLR-2 

and TLR-4 ligand respectively) were prepared. The adjuvant-modified RSV virosomes 

were shown to induce significantly stronger Th1 immunity than non-adjuvanted 

virosomes and formalin-inactivated RSV and to induce full protection against RSV 

infection [35,36]. Addition of an amphiphilic adjuvant prior to virosome reconstitution 

has also been used successfully for the generation of influenza vaccines. A study on 

virosomal H5N1 vaccine shows that incorporation of the LPS-derivative LpxL1 

stimulates vaccine immunogenicity and skews immune responses towards a Th1 

phenotype [37]. Alternatively, adjuvants can be simply added to preformed virosomal 

vaccines. Cox et al. showed that addition of ISCOMATRIX (Matrix-M
TM

) to preformed 

H5N1 virosomes prior to injection significantly enhances the immunogenicity of the 

vaccine in both mice and humans [38-40]. Murine studies further show that Matrix-M-

adjuvanted virosomes elicit much stronger Th1 responses (IgG2a, IL-2, IFN-γ and IL-12) 

and higher frequencies of multifunctional Th1 CD4+ cells when compared to plain 

virosomes. In addition, for intranasal delivery only the Matrix-M-adjuvanted but not plain 

virosomes provide protection against homologous virus infection. The effectiveness of a 

simple admixture of adjuvant and virosomal antigen is further clarified in our study. 

Addition of GPI-0100 to preformed virosomal H1N1 vaccine prior to immunization was 

sufficient to strongly potentiate immune responses.  

 

While GPI-0100 does enhance immune responses when combined with influenza subunit 

vaccine which largely lacks lipids, our results indicate that it is considerably more potent 

when admixed with virosomes which consist of reconstituted viral membranes. We 

hypothesize that the potent immunogenicity and antigen dose-sparing capacity of GPI-

0100-adjuvanted virosomes are due to a physical association of the amphiphilic adjuvant 

molecule with the virosomal membrane. Yet, we so far do not have formal proof for this 



hypothesis. Preliminary results from particle size determination by use of Nanosight 

equipment show that GPI-0100 changes the average particle size of influenza virosomal 

but not subunit vaccines. Whether the observed phenomenon is caused by GPI-0100 

partitioning into the virosomal membrane vesicles or by reformation of GPI-0100-

disrupted virosomes, or by a combination of both, needs to be elucidated.  

 

In summary, we show that GPI-0100 is a very potent adjuvant when used in combination 

with virosomal influenza vaccine. Particularly at limiting amounts of antigen, GPI-0100 

adjuvanted virosomes elicited higher antibody titers and higher numbers of IFNγ-

producing T cells than equal amounts of adjuvanted subunit vaccine. Remarkably, 

complete lung protection against homologous challenge was achieved by two 

immunizations with only 8 ng HA formulated in adjuvanted virosomes. This indicates that 

adjuvantation of virosomal influenza vaccine with GPI-0100 is a very promising strategy 

for  antigen dose sparing as required in case of influenza pandemics. Yet, further 

characterization of the vaccine formulation and optimization of the ratio between GPI-

0100 and the virosomal phospholipids are required before clinical application can be 

envisaged. 
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7. Figure legends 

 

Figure 1. Lung protection and hemaglutination inhibition (HAI) titer elicited by 

influenza subunit or virosomal vaccine with and without GPI-0100. 

Mice (n=6 per group) were immunized intramuscularly on day 0 and day 20 with 0.2 μg 

A/PR/8 subunit or virosomal vaccine alone or adjuvanted with 30 μg GPI-0100. The 

control mice received HBS buffer. Mice were infected with live PR8 virus one week after 

the second immunization and were sacrificed 3 days after challenge for ex vivo analysis. 

(A) Lung virus titers. Virus titers are expressed as the 
10

log virus titer per gram of lung 

tissue for individual mice. The black line represents the geometric mean virus titer per 

group. Due to technical reasons, only 4 or 5 samples from mice receiving plain or GPI-

0100-adjuvanted virosomes, respectively, were available for lung virus titration. (B) Post-

challenge HAI titers. The results are expressed as the 
2
log HAI titers for individual mice. 

The black line represents the geometric mean HAI titer per group. The dotted line 

represents the detection limit. The stars indicate statistical differences between compared 

groups. Levels of significance are depicted as follows: *: p < 0.05, **: p < 0.01 and ***: p 

< 0.005.  

 

Figure 2. Protective capacity of GPI-0100-adjuvanted influenza subunit or virosomal 

vaccine at different antigen doses. 

Mice were immunized intramuscularly on day 0 and day 20 with PR8 subunit or 

virosomal vaccine at different antigen doses (8, 40, 200 ng HA), adjuvanted with 15 μg 

GPI-0100. Control mice received HBS buffer. Mice were infected with live PR8 virus one 

week after the second immunization and were sacrificed 3 days after challenge for ex vivo 

analysis. (A) Weight changes. The weight upon sacrifice (day 30) was compared to the 

weight prior to challenge (day 27) for each individual mouse. The black line represents 

the arithmetic mean of the relative weight change per group. (B) Lung virus titer.  

Determined as described in the legend to Figure 1. 

 

Figure 3. Humoral immune responses to GPI-0100-adjuvanted influenza subunit or  

virosomal vaccine at different antigen doses. 



Pre- and post-challenge serum samples from the mice described in the legend to Fig. 2 

were collected on day 27 and 37, respectively. A) Total IgG responses after two 

immunizations. 
10

log IgG titers of individual mice are given. The black line represents the 

geometric mean IgG titer per group. (B) Post-challenge HAI titers. Due to technical 

reasons, only 4 samples from the mice that received 8 ng HA subunit adjuvanted with 15 

μg GPI-0100 were available for the HAI assay.   

 

Figure 4. Phenotype of the influenza-specific antibody responses to GPI-0100-

adjuvanted influenza subunit or virosomal vaccine. 

Serum samples from the mice described in the legend to Fig. 3(A) were analyzed. (A) 

Influenza-specific IgG1 (μg/ml) of individual mice with arithmetic mean per group. (B) 

Influenza-specific IgG2a (μg/ml) of individual mice with arithmetic mean per group. 

 

Figure 5. Cellular immune responses to GPI-0100-adjuvanted influenza subunit or 

virosomal vaccine at different antigen doses. 

Spleen samples from the mice described in the legend to Fig. 2 were collected on day 37. 

Splenocytes were isolated and stimulated overnight with PR8 subunit antigen. (A) IFN-γ-

producing splenocytes per 5x10
5
 cells of individual mice with arithmetic mean per group. 

(B) IL-4-producing splenocytes per 5x10
5
 cells of individual mice with arithmetic mean 

per group.  
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