91 research outputs found

    Absorption/Expulsion of Oligomers and Linear Macromolecules in a Polymer Brush

    Full text link
    The absorption of free linear chains in a polymer brush was studied with respect to chain size LL and compatibility χ\chi with the brush by means of Monte Carlo (MC) simulations and Density Functional Theory (DFT) / Self-Consistent Field Theory (SCFT) at both moderate, σg=0.25\sigma_g = 0.25, and high, σg=1.00\sigma_g = 1.00, grafting densities using a bead-spring model. Different concentrations of the free chains 0.0625ϕo0.3750.0625 \le \phi_o \le 0.375 are examined. Contrary to the case of χ=0\chi = 0 when all species are almost completely ejected by the polymer brush irrespective of their length LL, for χ<0\chi < 0 we find that the degree of absorption (absorbed amount) Γ(L)\Gamma(L) undergoes a sharp crossover from weak to strong (100\approx 100%) absorption, discriminating between oligomers, 1L81\le L\le 8, and longer chains. For a moderately dense brush, σg=0.25\sigma_g = 0.25, the longer species, L>8L > 8, populate predominantly the deep inner part of the brush whereas in a dense brush σg=1.00\sigma_g = 1.00 they penetrate into the "fluffy" tail of the dense brush only. Gyration radius RgR_g and end-to-end distance ReR_e of absorbed chains thereby scale with length LL as free polymers in the bulk. Using both MC and DFT/SCFT methods for brushes of different chain length 32N25632 \le N \le 256, we demonstrate the existence of unique {\em critical} value of compatibility χ=χc<0\chi = \chi^{c}<0. For χc(ϕo)\chi^{c}(\phi_o) the energy of free chains attains the {\em same} value, irrespective of length LL whereas the entropy of free chain displays a pronounced minimum. At χc\chi^{c} all density profiles of absorbing chains with different LL intersect at the same distance from the grafting plane. The penetration/expulsion kinetics of free chains into the polymer brush after an instantaneous change in their compatibility χ\chi displays a rather rich behavior. We find three distinct regimes of penetration kinetics of free chains regarding the length LL: I (1L81\le L\le 8), II (8LN8 \le L \le N), and III (L>NL > N), in which the time of absorption τ\tau grows with LL at a different rate. During the initial stages of penetration into the brush one observes a power-law increase of Γtα\Gamma \propto t^\alpha with power αlnϕo\alpha \propto -\ln \phi_o whereby penetration of the free chains into the brush gets {\em slower} as their concentration rises

    Photocatalytic Nanolithography of Self-Assembled Monolayers and Proteins

    Get PDF
    Self-assembled monolayers of alkylthiolates on gold and alkylsilanes on silicon dioxide have been patterned photocatalytically on sub-100 nm length-scales using both apertured near-field and apertureless methods. Apertured lithography was carried out by means of an argon ion laser (364 nm) coupled to cantilever-type near-field probes with a thin film of titania deposited over the aperture. Apertureless lithography was carried out with a helium–cadmium laser (325 nm) to excite titanium-coated, contact-mode atomic force microscope (AFM) probes. This latter approach is readily implementable on any commercial AFM system. Photodegradation occurred in both cases through the localized photocatalytic degradation of the monolayer. For alkanethiols, degradation of one thiol exposed the bare substrate, enabling refunctionalization of the bare gold by a second, contrasting thiol. For alkylsilanes, degradation of the adsorbate molecule provided a facile means for protein patterning. Lines were written in a protein-resistant film formed by the adsorption of oligo(ethylene glycol)-functionalized trichlorosilanes on glass, leading to the formation of sub-100 nm adhesive, aldehyde-functionalized regions. These were derivatized with aminobutylnitrilotriacetic acid, and complexed with Ni2+, enabling the binding of histidine-labeled green fluorescent protein, which yielded bright fluorescence from 70-nm-wide lines that could be imaged clearly in a confocal microscope

    Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings

    Get PDF
    corecore