1,021 research outputs found

    Local intensity adaptive image coding

    Get PDF
    The objective of preprocessing for machine vision is to extract intrinsic target properties. The most important properties ordinarily are structure and reflectance. Illumination in space, however, is a significant problem as the extreme range of light intensity, stretching from deep shadow to highly reflective surfaces in direct sunlight, impairs the effectiveness of standard approaches to machine vision. To overcome this critical constraint, an image coding scheme is being investigated which combines local intensity adaptivity, image enhancement, and data compression. It is very effective under the highly variant illumination that can exist within a single frame or field of view, and it is very robust to noise at low illuminations. Some of the theory and salient features of the coding scheme are reviewed. Its performance is characterized in a simulated space application, the research and development activities are described

    Advanced technology development for image gathering, coding, and processing

    Get PDF
    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding

    A spectral reflectance estimation technique using multispectral data from the Viking lander camera

    Get PDF
    A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system

    Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    Get PDF
    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing

    Formulation of the information capacity of the optical-mechanical line-scan imaging process

    Get PDF
    An expression for the information capacity of the optical-mechanical line-scan imaging process is derived which includes the effects of blurring of spatial, photosensor noise, aliasing, and quantization. Both the information capacity for a fixed data density and the information efficiency (the ratio of information capacity to data density) exhibit a distinct single maximum when displayed as a function of sampling rate, and the location of this maximum was determined by the system frequency-response shape, signal-to-noise ratio, and quantization interval

    A technique for constructing spectral reflectance curves from Viking lander camera multispectral data

    Get PDF
    A technique for evaluating the construction of spectral reflectance curves from multispectral data obtained with the Viking lander cameras is presented. The multispectral data is limited to 6 channels in the wave-length range 0.4 to 1.1 microns, and several of the channels suffer from appreciable out-of-band response. The technique represents the estimated reflectance curves as a linear combination of known basic functions with coefficients determined to minimize the error in the representation, and it permits all channels, with and without out-of-band response, to contribute equally valid information. The technique is evaluated for known spectral reflectance curves of 8 materials felt likely to be present on the Martian surface. The technique provides an essentially exact fit if the the reflectance curve has no pronounced maxima and minima. Even if the curve has pronounced maxima and minima, the fit is good and reveals the most dominant features. Since only 6 samples are available some short period features are lost. This loss is almost certainly due to undersampling rather than out-of-band channel response

    An investigation of the facsimile camera response to object motion

    Get PDF
    A general analytical model of the facsimile camera response to object motion is derived as an initial step toward characterizing the resulting image degradation. This model expresses the spatial convolution of a time-varying object radiance distribution and camera point-spread function for each picture element in the image. Time variations and these two functions during each convolution account for blurring of small image detail, and variations between, as well as during, successive convolutions account for geometric image distortions. If the object moves beyond the angular extent of several picture elements while it is being imaged, then geometric distortion tends to dominate blurring as the primary cause of image degradation. The extent of distortion depends not only on object size and velocity but also on the direction of object motion, and is therefore difficult to classify in a general sense

    Optical analysis of a compound quasi-microscope for planetary landers

    Get PDF
    A quasi-microscope concept, consisting of facsimile camera augmented with an auxiliary lens as a magnifier, was introduced and analyzed. The performance achievable with this concept was primarily limited by a trade-off between resolution and object field; this approach leads to a limiting resolution of 20 microns when used with the Viking lander camera (which has an angular resolution of 0.04 deg). An optical system is analyzed which includes a field lens between camera and auxiliary lens to overcome this limitation. It is found that this system, referred to as a compound quasi-microscope, can provide improved resolution (to about 2 microns ) and a larger object field. However, this improvement is at the expense of increased complexity, special camera design requirements, and tighter tolerances on the distances between optical components

    Image gathering and coding for digital restoration: Information efficiency and visual quality

    Get PDF
    Image gathering and coding are commonly treated as tasks separate from each other and from the digital processing used to restore and enhance the images. The goal is to develop a method that allows us to assess quantitatively the combined performance of image gathering and coding for the digital restoration of images with high visual quality. Digital restoration is often interactive because visual quality depends on perceptual rather than mathematical considerations, and these considerations vary with the target, the application, and the observer. The approach is based on the theoretical treatment of image gathering as a communication channel (J. Opt. Soc. Am. A2, 1644(1985);5,285(1988). Initial results suggest that the practical upper limit of the information contained in the acquired image data range typically from approximately 2 to 4 binary information units (bifs) per sample, depending on the design of the image-gathering system. The associated information efficiency of the transmitted data (i.e., the ratio of information over data) ranges typically from approximately 0.3 to 0.5 bif per bit without coding to approximately 0.5 to 0.9 bif per bit with lossless predictive compression and Huffman coding. The visual quality that can be attained with interactive image restoration improves perceptibly as the available information increases to approximately 3 bifs per sample. However, the perceptual improvements that can be attained with further increases in information are very subtle and depend on the target and the desired enhancement

    Application of information theory to the design of line-scan imaging systems

    Get PDF
    Information theory is used to formulate a single figure of merit for assessing the performance of line scan imaging systems as a function of their spatial response (point spread function or modulation transfer function), sensitivity, sampling and quantization intervals, and the statistical properties of a random radiance field. Computational results for the information density and efficiency (i.e., the ratio of information density to data density) are intuitively satisfying and compare well with experimental and theoretical results obtained by earlier investigators concerned with the performance of TV systems
    corecore