61 research outputs found

    Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies

    Get PDF
    Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH4 deficiencies. Conclusion: Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH4 deficient patients

    Focal structural variants revealed by whole genome sequencing disrupt the histone demethylase KDM4C in B cell lymphomas

    Get PDF
    Histone methylation-modifiers, like EZH2 and KMT2D, are recurrently altered in B-cell lymphomas. To comprehensively describe the landscape of alterations affecting genes encoding histone methylation-modifiers in lymphomagenesis we investigated whole genome and transcriptome data of 186 mature B-cell lymphomas sequenced in the ICGC MMML-Seq project. Besides confirming common alterations of KMT2D (47% of cases), EZH2 (17%), SETD1B (5%), PRDM9 (4%), KMT2C (4%), and SETD2 (4%) also identified by prior exome or RNAseq studies, we here unravel KDM4C in chromosome 9p24, encoding a histone demethylase, to be recurrently altered. Focal structural variation was the main mechanism of KDM4C alterations, which was independent from 9p24 amplification. We identified KDM4C alterations also in lymphoma cell lines including a focal homozygous deletion in a classical Hodgkin lymphoma cell line. By integrating RNAseq and genome sequencing data we predict KDM4C structural variants to result in loss-of-function. By functional reconstitution studies in cell lines, we provide evidence that KDM4C can act as tumor suppressor. Thus, we show that identification of structural variants in whole genome sequencing data adds to the comprehensive description of the mutational landscape of lymphomas and, moreover, establish KDM4C as putative tumor suppressive gene recurrently altered in subsets of B-cell derived lymphomas

    Metamorphosis of Subarachnoid Hemorrhage Research: from Delayed Vasospasm to Early Brain Injury

    Get PDF
    Delayed vasospasm that develops 3–7 days after aneurysmal subarachnoid hemorrhage (SAH) has traditionally been considered the most important determinant of delayed ischemic injury and poor outcome. Consequently, most therapies against delayed ischemic injury are directed towards reducing the incidence of vasospasm. The clinical trials based on this strategy, however, have so far claimed limited success; the incidence of vasospasm is reduced without reduction in delayed ischemic injury or improvement in the long-term outcome. This fact has shifted research interest to the early brain injury (first 72 h) evoked by SAH. In recent years, several pathological mechanisms that activate within minutes after the initial bleed and lead to early brain injury are identified. In addition, it is found that many of these mechanisms evolve with time and participate in the pathogenesis of delayed ischemic injury and poor outcome. Therefore, a therapy or therapies focused on these early mechanisms may not only prevent the early brain injury but may also help reduce the intensity of later developing neurological complications. This manuscript reviews the pathological mechanisms of early brain injury after SAH and summarizes the status of current therapies

    SheddomeDB: the ectodomain shedding database for membrane-bound shed markers

    Full text link

    Succinic semialdehyde dehydrogenase deficiency: In vitro and in silico characterization of a novel pathogenic missense variant and analysis of the mutational spectrum of aldh5a1

    No full text
    Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare, monogenic disorder affecting the degradation of the main inhibitory neurotransmitter γ‐amino butyric acid (GABA). Pathogenic variants in the ALDH5A1 gene that cause an enzymatic dysfunction of succinic semialdehyde dehydrogenase (SSADH) lead to an accumulation of potentially toxic metabolites, including γ–hydroxybutyrate (GHB). Here, we present a patient with a severe phenotype of SSADHD caused by a novel genetic variant c.728T > C that leads to an exchange of leucine to proline at residue 243, located within the highly conserved nicotinamide adenine dinucleotide (NAD)+ binding domain of SSADH. Proline harbors a pyrrolidine within its side chain known for its conformational rigidity and disruption of protein secondary structures. We investigate the effect of this novel variant in vivo, in vitro, and in silico. We furthermore examine the mutational spectrum of all previously described disease‐causing variants and computationally assess all biologically possible missense variants of ALDH5A1 to identify mutational hotspots
    corecore