2 research outputs found

    A Systematic Review of the Cost-Effectiveness of Nurse Practitioners and Clinical Nurse Specialists: What Is the Quality of the Evidence?

    No full text
    Background. Improved quality of care and control of healthcare costs are important factors influencing decisions to implement nurse practitioner (NP) and clinical nurse specialist (CNS) roles. Objective. To assess the quality of randomized controlled trials (RCTs) evaluating NP and CNS cost-effectiveness (defined broadly to also include studies measuring health resource utilization). Design. Systematic review of RCTs of NP and CNS cost-effectiveness reported between 1980 and July 2012. Results. 4,397 unique records were reviewed. We included 43 RCTs in six groupings, NP-outpatient (), NP-transition (), NP-inpatient (), CNS-outpatient (), CNS-transition (), and CNS-inpatient (). Internal validity was assessed using the Cochrane risk of bias tool; 18 (42%) studies were at low, 17 (39%) were at moderate, and eight (19%) at high risk of bias. Few studies included detailed descriptions of the education, experience, or role of the NPs or CNSs, affecting external validity. Conclusions. We identified 43 RCTs evaluating the cost-effectiveness of NPs and CNSs using criteria that meet current definitions of the roles. Almost half the RCTs were at low risk of bias. Incomplete reporting of study methods and lack of details about NP or CNS education, experience, and role create challenges in consolidating the evidence of the cost-effectiveness of these roles.Peer Reviewe

    Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries

    Get PDF
    Background Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)
    corecore