76 research outputs found
Momentum-Resolved Tunneling into Fractional Quantum Hall Edges
Tunneling from a two-dimensional contact into quantum-Hall edges is
considered theoretically for a case where the barrier is extended, uniform, and
parallel to the edge. In contrast to previously realized tunneling geometries,
details of the microscopic edge structure are exhibited directly in the voltage
and magnetic-field dependence of the differential tunneling conductance. In
particular, it is possible to measure the dispersion of the edge-magnetoplasmon
mode, and the existence of additional, sometimes counterpropagating,
edge-excitation branches could be detected.Comment: 4 pages, 3 figures, RevTex
Fluid-membrane tethers: minimal surfaces and elastic boundary layers
Thin cylindrical tethers are common lipid bilayer membrane structures,
arising in situations ranging from micromanipulation experiments on artificial
vesicles to the dynamic structure of the Golgi apparatus. We study the shape
and formation of a tether in terms of the classical soap-film problem, which is
applied to the case of a membrane disk under tension subject to a point force.
A tether forms from the elastic boundary layer near the point of application of
the force, for sufficiently large displacement. Analytic results for various
aspects of the membrane shape are given.Comment: 12 page
Microscopic View on Short-Range Wetting at the Free Surface of the Binary Metallic Liquid Gallium-Bismuth: An X-ray Reflectivity and Square Gradient Theory Study
We present an x-ray reflectivity study of wetting at the free surface of the
binary liquid metal gallium-bismuth (Ga-Bi) in the region where the bulk phase
separates into Bi-rich and Ga-rich liquid phases. The measurements reveal the
evolution of the microscopic structure of wetting films of the Bi-rich,
low-surface-tension phase along different paths in the bulk phase diagram. A
balance between the surface potential preferring the Bi-rich phase and the
gravitational potential which favors the Ga-rich phase at the surface pins the
interface of the two demixed liquid metallic phases close to the free surface.
This enables us to resolve it on an Angstrom level and to apply a mean-field,
square gradient model extended by thermally activated capillary waves as
dominant thermal fluctuations. The sole free parameter of the gradient model,
i.e. the so-called influence parameter, , is determined from our
measurements. Relying on a calculation of the liquid/liquid interfacial tension
that makes it possible to distinguish between intrinsic and capillary wave
contributions to the interfacial structure we estimate that fluctuations affect
the observed short-range, complete wetting phenomena only marginally. A
critical wetting transition that should be sensitive to thermal fluctuations
seems to be absent in this binary metallic alloy.Comment: RevTex4, twocolumn, 15 pages, 10 figure
- …