1,195 research outputs found
Superbalance of holographic entropy inequalities
The domain of allowed von Neumann entropies of a holographic field theory carves out a polyhedral cone — the holographic entropy cone — in entropy space. Such polyhedral cones are characterized by their extreme rays. For an arbitrary number of parties, it is known that the so-called perfect tensors are extreme rays. In this work, we constrain the form of the remaining extreme rays by showing that they correspond to geometries with vanishing mutual information between any two parties, ensuring the absence of Bell pair type entanglement between them. This is tantamount to proving that besides subadditivity, all non-redundant holographic entropy inequalities are superbalanced, i.e. not only do UV divergences cancel in the inequality itself (assuming smooth entangling surfaces), but also in the purification thereof
Black holes in Godel universes and pp-waves
We find exact rotating and non-rotating neutral black hole solutions in the
Godel universe of the five dimensional minimal supergravity theory. We also
describe the embedding of this solution in M-theory. After dimensional
reduction and T-duality, we obtain a supergravity solution corresponding to
placing a black string in a pp-wave background.Comment: 9 pages, 1 figur
Theoretical UBVRI colors of iron core white dwarfs
We explore photometric properties of hypothetical iron core white dwarfs and
compute their expected colors in UBVRI Johnson broadband system. Atmospheres of
iron core WDs in this paper consist of pure iron covered by a pure hydrogen
layer of an arbitrary column mass. LTE model atmospheres and theoretical
spectra are calculated on the basis of Los Alamos TOPS opacities and the
equation of state from the OPAL project, suitable for nonideal Fe and H gases.
We have also computed UBVRI colors of the models and determined an area on the
B-V vs. U-B and U-B vs. V-I planes, occupied by both pure Fe, and pure H model
atmospheres of WD stars. Finally, we search for iron core white dwarf
candidates in the available literature.Comment: 13 pages, 12 figures, Astronomy & Astrophysics (2003) in prin
Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data
We present theoretical atmosphere, spectral, and light-curve models for
extrasolar giant planets (EGPs) undergoing strong irradiation for which {\it
Spitzer} planet/star contrast ratios or light curves have been published (circa
June 2007). These include HD 209458b, HD 189733b, TrES-1, HD 149026b, HD
179949b, and And b. By comparing models with data, we find that a
number of EGP atmospheres experience thermal inversions and have stratospheres.
This is particularly true for HD 209458b, HD 149026b, and And b.
This finding translates into qualitative changes in the planet/star contrast
ratios at secondary eclipse and in close-in EGP orbital light curves. Moreover,
the presence of atmospheric water in abundance is fully consistent with all the
{\it Spitzer} data for the measured planets. For planets with stratospheres,
water absorption features invert into emission features and mid-infrared fluxes
can be enhanced by a factor of two. In addition, the character of near-infrared
planetary spectra can be radically altered. We derive a correlation between the
importance of such stratospheres and the stellar flux on the planet, suggesting
that close-in EGPs bifurcate into two groups: those with and without
stratospheres. From the finding that TrES-1 shows no signs of a stratosphere,
while HD 209458b does, we estimate the magnitude of this stellar flux
breakpoint. We find that the heat redistribution parameter, P, for the
family of close-in EGPs assumes values from 0.1 to 0.4. This paper
provides a broad theoretical context for the future direct characterization of
EGPs in tight orbits around their illuminating stars.Comment: Accepted to Ap. J., provided here in emulateapj format: 28 pages, 8
figures, many with multiple panel
Radiation Hydrodynamics of Line-Driven Winds
Dimtri Mihalas' textbooks in the 70's and 80's on "Stellar Atmospheres" and
"Foundations of Radiation Hydrodynamics" helped lay the early groundwork for
understanding the moving atmospheres and winds of massive, luminous stars.
Indeed, the central role of the momentum of stellar radiation in driving the
mass outflow makes such massive-star winds key prototypes for radiation
hydrodynamical processes. This paper reviews the dynamics of such radiative
driving, building first upon the standard CAK model, and then discussing
subtleties associated with the development and saturation of instabilities, and
wind initiation near the sonic point base. An overall goal is to illuminate the
rich physics of radiative driving and the challenges that lie ahead in
developing dynamical models that can explain the broad scaling of mass loss
rate and flow speed with stellar properties, as well as the often complex
structure and variability observed in massive-star outflows.Comment: 14 pages. to appear in "Recent Directions in Astrophysical
Quantitative Spectroscopy and Radiation Hydrodynamics
The Gravity Dual of a Density Matrix
For a state in a quantum field theory on some spacetime, we can associate a
density matrix to any subset of a given spacelike slice by tracing out the
remaining degrees of freedom. In the context of the AdS/CFT correspondence, if
the original state has a dual bulk spacetime with a good classical description,
it is natural to ask how much information about the bulk spacetime is carried
by the density matrix for such a subset of field theory degrees of freedom. In
this note, we provide several constraints on the largest region that can be
fully reconstructed, and discuss specific proposals for the geometric
construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde
Black strings in asymptotically plane wave geometries
We present a class of black string spacetimes which asymptote to maximally
symmetric plane wave geometries. Our construction will rely on a solution
generating technique, the null Melvin twist, which deforms an asymptotically
flat black string spacetime to an asymptotically plane wave black string
spacetime while preserving the event horizon.Comment: 15 pages; references adde
The anomalous accretion disk of the Cataclysmic Variable RW Sextantis
Synthetic spectra covering the wavelength range 900\AA~to 3000\AA~provide an
accurate fit, established by a analysis, to a combined
observed spectrum of RW Sextantis. Two separately calibrated distances to the
system establish the synthetic spectrum comparison on an absolute flux basis
but with two alternative scaling factors, requiring alternative values of
for final models. Based on comparisons for a range of
values, the observed spectrum does not follow the standard model. Rather than
the exponent 0.25 in the expression for the radial temperature profile, a value
close to 0.125 produces a synthetic spectrum with an accurate fit to the
combined spectrum. A study of time-series spectra shows that a proposed
warped or tilted disk is not supported by the data; an alternative proposal is
that an observed non-axisymmetric wind results from an interaction with the
mass transfer stream debris.Comment: 56 pages, 15 figures, 11 tables. Accepted for The Astrophysical
Journa
- …