28 research outputs found
Small Hairy Black Holes in Global AdS Spacetime
We study small charged black holes in global AdS spacetime in the presence of
a charged massless minimally coupled scalar field. In a certain parameter range
these black holes suffer from well known superradiant instabilities. We
demonstrate that the end point of the resultant tachyon condensation process is
a hairy black hole which we construct analytically in a perturbative expansion
in the black hole radius. At leading order our solution is a small undeformed
RNAdS black hole immersed into a charged scalar condensate that fills the AdS
`box'. These hairy black hole solutions appear in a two parameter family
labelled by their mass and charge. Their mass is bounded from below by a
function of their charge; at the lower bound a hairy black hole reduces to a
regular horizon free soliton which can also be thought of as a nonlinear Bose
condensate. We compute the microcanonical phase diagram of our system at small
mass, and demonstrate that it exhibits a second order `phase transition'
between the RNAdS black hole and the hairy black hole phases.Comment: 68+1 pages, 18 figures, JHEP format. v2 : small typos corrected and a
reference adde
Degenerate Stars and Gravitational Collapse in AdS/CFT
We construct composite CFT operators from a large number of fermionic primary
fields corresponding to states that are holographically dual to a zero
temperature Fermi gas in AdS space. We identify a large N regime in which the
fermions behave as free particles. In the hydrodynamic limit the Fermi gas
forms a degenerate star with a radius determined by the Fermi level, and a mass
and angular momentum that exactly matches the boundary calculations. Next we
consider an interacting regime, and calculate the effect of the gravitational
back-reaction on the radius and the mass of the star using the
Tolman-Oppenheimer-Volkoff equations. Ignoring other interactions, we determine
the "Chandrasekhar limit" beyond which the degenerate star (presumably)
undergoes gravitational collapse towards a black hole. This is interpreted on
the boundary as a high density phase transition from a cold baryonic phase to a
hot deconfined phase.Comment: 75 page
From Navier-Stokes To Einstein
We show by explicit construction that for every solution of the
incompressible Navier-Stokes equation in dimensions, there is a uniquely
associated "dual" solution of the vacuum Einstein equations in
dimensions. The dual geometry has an intrinsically flat timelike boundary
segment whose extrinsic curvature is given by the stress tensor of
the Navier-Stokes fluid. We consider a "near-horizon" limit in which
becomes highly accelerated. The near-horizon expansion in gravity is shown to
be mathematically equivalent to the hydrodynamic expansion in fluid dynamics,
and the Einstein equation reduces to the incompressible Navier-Stokes equation.
For , we show that the full dual geometry is algebraically special Petrov
type II. The construction is a mathematically precise realization of
suggestions of a holographic duality relating fluids and horizons which began
with the membrane paradigm in the 70's and resurfaced recently in studies of
the AdS/CFT correspondence.Comment: 15 pages, 2 figures, typos correcte
Holographic Brownian Motion in Magnetic Environments
Using the gauge/gravity correspondence, we study the dynamics of a heavy
quark in two strongly-coupled systems at finite temperature: Super-Yang-Mills
in the presence of a magnetic field and non-commutative Super-Yang-Mills. In
the former, our results agree qualitatively with the expected behavior from
weakly-coupled theories. In the latter, we propose a Langevin equation that
accounts for the effects of non-commutativity and we find new interesting
features. The equation resembles the structure of Brownian motion in the
presence of a magnetic field and implies that the fluctuations along
non-commutative directions are correlated. Moreover, our results show that the
viscosity is smaller than the commutative case and that the diffusion
properties of the quark are unaffected by non-commutativity. Finally, we
compute the random force autocorrelator and verify that the
fluctuation-dissipation theorem holds in the presence of non-commutativity.Comment: 34 pages. v2: typos corrected. v3: title and abstract slightly
modified in order to better reflect the contents of the paper; footnote 3 and
one reference were also added; version accepted for publication in JHE
Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years
Understanding the internal ocean variability and its influence on climate is imperative for society. A key aspect concerns the enigmatic Atlantic Multidecadal Oscillation (AMO), a feature defined by a 60- to 90-year variability in North Atlantic sea-surface temperatures. The nature and origin of the AMO is uncertain, and it remains unknown whether it represents a persistent periodic driver in the climate system, or merely a transient feature. Here, we show that distinct, ∼55- to 70-year oscillations characterized the North Atlantic ocean-atmosphere variability over the past 8,000 years. We test and reject the hypothesis that this climate oscillation was directly forced by periodic changes in solar activity. We therefore conjecture that a quasi-persistent ∼55- to 70-year AMO, linked to internal ocean-atmosphere variability, existed during large parts of the Holocene. Our analyses further suggest that the coupling from the AMO to regional climate conditions was modulated by orbitally induced shifts in large-scale ocean-atmosphere circulation
Influence of ocean–atmospheric oscillations on lake ice phenology in eastern North America
Our results reveal long-term trends in ice out dates (1836–2013) for twelve lakes in Maine, New Brunswick and New Hampshire, in eastern North America. The trends are remarkably coherent between lakes (rs = 0.462–0.933, p < 0.01) and correlate closely with the March–April (MA) instrumental temperature records from the region (rs = 0.488–0.816, p < 0.01). This correlation permits use of ice out dates as a proxy to extend the shorter MA instrumental record (1876–2013). Mean ice out dates trended progressively earlier during the recovery from the Little Ice Age through to the 1940s, and gradually became later again through to the late 1970s, when ice out dates had returned to values more typical of the late nineteenth century. Post-1970’s ice out dates resumed trending toward earlier dates, with the twenty-first century being characterized by the earliest ice out dates on record. Spectral and wavelet time series analysis indicate that ice out is influenced by several teleconnections including the Quasi-biennial Oscillation, El Niño-Southern Oscillation, North Atlantic Oscillation, as well as a significant correlation between inland lake records and the Atlantic Multidecadal Oscillation. The relative influence of these teleconnections is variable with notable shifts occurring after ~1870, ~1925, and ~1980–2000. The intermittent expression of these cycles in the ice out and MA instrumental record is not only influenced by absolute changes in the intensity of the various teleconnections and other climate drivers, but through phase interference between teleconnections, which periodically damps the various signals