485 research outputs found

    Cosmological Relativity: A General-Relativistic Theory for the Accelerating Expanding Universe

    Get PDF
    Recent observations of distant supernovae imply, in defiance of expectations, that the universe growth is accelerating, contrary to what has always been assumed that the expansion is slowing down due to gravity. In this paper a general-relativistic cosmological theory that gives a direct relationship between distances and redshifts in an expanding universe is presented. The theory is actually a generalization of Hubble's law taking gravity into account by means of Einstein's theory of general relativity. The theory predicts that the universe can have three phases of expansion, decelerating, constant and accelerating, but it is shown that at present the first two cases are excluded, although in the past it had experienced them. Our theory shows that the universe now is definitely in the stage of accelerating expansion, confirming the recent experimental results

    Halo Shapes, Dynamics and Environment

    Full text link
    In the hierarchical structure formation model cosmic halos are supposed to form by accretion of smaller units along anisotropic direction, defined by large-scale filamentary structures. After the epoch of primary mass aggregation (which depend on the cosmological model), violent relaxation processes will tend to alter the halo phase-space configuration producing quasi-spherical halos with a relatively smooth density profiles. Here we attempt to investigate the relation between halos shapes, their environment and their dynamical state. To this end we have run a large (L=500h1L=500 h^{-1} Mpc, Np=5123N_{p}=512^3 particles) N-body simulation of a flat low-density cold dark matter model with a matter density Ωm=1ΩΛ=0.3\Omega_{\rm m}=1-\Omega_{\Lambda}=0.3, Hubble constant H=70H_{\circ}=70 km s1^{-1} Mpc1^{-1} and a normalization parameter of σ8=0.9\sigma_{8}=0.9. The particle mass is mp7.7×1010h1Mm_{\rm p}\ge 7.7\times 10^{10} h^{-1} M_{\odot} comparable to the mass of one single galaxy. The halos are defined using a friends-of-friend algorithm with a linking length given by l=0.17νˉl=0.17\bar{\nu} where νˉ\bar{\nu} is the mean density. This linking length corresponds to an overdensity ρ/ρmean200\rho/\rho_{\rm mean}\simeq 200 at the present epoch (z=0z=0) and the total number of halos with more than 130 particles (M>3×1013h1MM>3 \times 10^{13} h^{-1} M_{\odot}) is 57524.Comment: To be published in "Groups Of Galaxies In The Nearby Universe", held in Chile, December 2005, edited by I.Saviane, V.Ivanov and J.Borissova. Springer-Verlag series "ESO Astrophysics Symposia

    The Apparent and Intrinsic Shape of the APM Galaxy Clusters

    Get PDF
    We estimate the distribution of intrinsic shapes of APM galaxy clusters from the distribution of their apparent shapes. We measure the projected cluster ellipticities using two alternative methods. The first method is based on moments of the discrete galaxy distribution while the second is based on moments of the smoothed galaxy distribution. We study the performance of both methods using Monte Carlo cluster simulations covering the range of APM cluster distances and including a random distribution of background galaxies. We find that the first method suffers from severe systematic biases, whereas the second is more reliable. After excluding clusters dominated by substructure and quantifying the systematic biases in our estimated shape parameters, we recover a corrected distribution of projected ellipticities. We use the non-parametric kernel method to estimate the smooth apparent ellipticity distribution, and numerically invert a set of integral equations to recover the corresponding distribution of intrinsic ellipticities under the assumption that the clusters are either oblate or prolate spheroids. The prolate spheroidal model fits the APM cluster data best.Comment: 8 pages, including 7 figures, accepted for publication in MNRA

    Testing The Friedmann Equation: The Expansion of the Universe During Big-Bang Nucleosynthesis

    Get PDF
    In conventional general relativity, the expansion rate H of a Robertson-Walker universe is related to the energy density by the Friedmann equation. Aside from the present day, the only epoch at which we can constrain the expansion history in a model-independent way is during Big-Bang Nucleosynthesis (BBN). We consider a simple two-parameter characterization of the behavior of H during BBN and derive constraints on this parameter space, finding that the allowed region of parameter space is essentially one-dimensional. We also study the effects of a large neutrino asymmetry within this framework. Our results provide a simple way to compare an alternative cosmology to the observational requirement of matching the primordial abundances of the light elements.Comment: 18 pages, Final version to be published in Phys. Rev.

    Search for LBV Candidates in the M33 Galaxy

    Full text link
    A total of 185 luminous blue variable (LBV) candidates with V < 18.5 and B-V < 0.35 are selected based on the photometrical Survey of Local Group Galaxies made by P. Massey et al. 2006. The candidates were selected using aperture photometry of H-alpha images. The primary selection criterion is that the prospective candidate should be a blue star with H-aplha emission. In order not to miss appreciably reddened LBV candidates, we compose an additional list of 25 presumably reddened (0.35 < B-V < 1.2, V < 18.5) emission star candidates. A comparison with the list of known variables in the M33 galaxy showed 29% of our selected candidates to be photometrically variable. We also find our list to agree well with the lists of emission-line objects obtained in earlier papers using different methods.Comment: 6 figure

    The natural science of cosmology

    Full text link
    The network of cosmological tests is tight enough now to show that the relativistic Big Bang cosmology is a good approximation to what happened as the universe expanded and cooled through light element production and evolved to the present. I explain why I reach this conclusion, comment on the varieties of philosophies informing searches for a still better cosmology, and offer an example for further study, the curious tendency of some classes of galaxies to behave as island universes.Comment: Keynote lecture at the seventh International Conference on Gravitation and Cosmology, Goa India, December 201

    A Century of Cosmology

    Full text link
    In the century since Einstein's anno mirabilis of 1905, our concept of the Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across to an observed horizon about 30 Gpc across that is only a tiny fraction of an immensely large inflated bubble. The expansion of our knowledge about the Universe, both in the types of data and the sheer quantity of data, has been just as dramatic. This talk will summarize this century of progress and our current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology - Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex with 2 figure

    Structure of the Galaxies in the NGC 80 Group

    Full text link
    BV-bands photometric data obtained at the 6-m telescope of the Special Astrophysical Observatory are used to analyze the structure of 13 large disk galaxies in the NGC 80 group. Nine of the 13 galaxies under consideration are classified by us as lenticular galaxies. The stellar populations in the galaxies are very different, from old ones with ages of T>10 Gyrs (IC 1541) to relatively young, with the ages of T<2-3 Gyr (IC 1548, NGC 85). In one case, current star formation is known (UCM 0018+2216). In most of the galaxies, more precisely in all of them more luminous than M(B) -18, two-tiered (`antitruncated') stellar disks are detected, whose radial surface brightness profiles can be fitted by two exponential segments with different scalelengths -- shorter near the center and longer at the periphery. All dwarf S0 galaxies with single-scalelength exponential disks are close companions to giant galaxies. Except for this fact, no dependence of the properties of S0 galaxies on distance from the center of the group is found. Morphological traces of minor merger are found in the lenticular galaxy NGC 85. Basing on the last two points, we conclude that the most probable mechanisms for the transformation of spirals into lenticular galaxies in groups are gravitational ones, namely, minor mergers and tidal interactions.Comment: 24 pages, 9 figures, slightly improved version of the paper published in the December, 2009, issue of the Astronomy Report

    Respectable Drinkers, Sensible Drinking, Serious Leisure: Single-Malt Whisky Enthusiasts and the Moral Panic of Irresponsible Others

    Get PDF
    In the public discourse of policy-makers and journalists, drinkers of (excessive) alcohol are portrayed either as irresponsible, immoral deviants or as gullible victims. In other words, the public discourse engenders a moral panic about alcohol-crazed individuals, who become what Cohen [1972. Folk devil and moral panics. London: Routledge] identifies as folk devils: the Other, abusing alcohol to create anti-social disorder. However, alcohol-drinking was, is and continues to be an everyday practice in the leisure lives of the majority of people in the UK. In this research article, I want to explore the serious leisure of whisky-tasting to provide a counter to the myth of the alcohol-drinker as folk devil, to try to construct a new public discourse of sensible drinking. I will draw on ethnographic work at whisky-tastings alongside interviews and analysis of on-line discourses. I show that participation in whisky-tasting events creates a safe space in which excessive amounts of alcohol are consumed, yet the norms of the particular habitus ensure that such drinking never leads to misbehaviour. In doing so, however, I will note that the respectability of whisky-drinking is associated with its masculine, white, privileged habitus – the folk devil becomes someone else, someone Other

    GMRT HI observations of the Eridanus group of galaxies

    Full text link
    The GMRT HI 21cm-line observations of galaxies in the Eridanus group are presented. The Eridanus group, at a distance of ~23 Mpc, is a loose group of \~200 galaxies. The group extends more than 10 Mpc in projection. The velocity dispersion of the galaxies in the group is ~240 km/s. The galaxies are clustered into different sub-groups. The overall population mix of the group is 30% (E+S0) and 70% (Sp+Irr). The observations of 57 Eridanus galaxies were carried out with the GMRT for ~200 hour. HI emission was detected from 31 galaxies. The channel rms of ~1.0 mJy beam^{-1} was achieved for most of the image-cubes made with 4 hour of data. The corresponding HI column density sensitivity (3-sigma) is ~1x10^{20} cm^{-2} for a velocity-width of ~13.4 km/s. The 3-sigma detection limit of HI mass is ~1.2x10^{7} M_sun for a line-width of 50 km/s. Total HI images, HI velocity fields, global HI line profiles, HI mass surface densities, HI disk parameters and HI rotation curves are presented. The velocity fields are analysed separately for the approaching and the receding sides of the galaxies. This data will be used to study the HI and the radio continuum properties, the Tully-Fisher relations, the dark matter halos, and the kinematical and HI lopsidedness in galaxies.Comment: 75 pages including HI atlas; Accepted for publication in Journal of Astroph. & Astron. March, 200
    corecore