6,665 research outputs found
Effects of Helium Phase Separation on the Evolution of Extrasolar Giant Planets
We build on recent new evolutionary models of Jupiter and Saturn and here
extend our calculations to investigate the evolution of extrasolar giant
planets of mass 0.15 to 3.0 M_J. Our inhomogeneous thermal history models show
that the possible phase separation of helium from liquid metallic hydrogen in
the deep interiors of these planets can lead to luminosities ~2 times greater
than have been predicted by homogeneous models. For our chosen phase diagram
this phase separation will begin to affect the planets' evolution at ~700 Myr
for a 0.15 M_J object and ~10 Gyr for a 3.0 M_J object. We show how phase
separation affects the luminosity, effective temperature, radii, and
atmospheric helium mass fraction as a function of age for planets of various
masses, with and without heavy element cores, and with and without the effect
of modest stellar irradiation. This phase separation process will likely not
affect giant planets within a few AU of their parent star, as these planets
will cool to their equilibrium temperatures, determined by stellar heating,
before the onset of phase separation. We discuss the detectability of these
objects and the likelihood that the energy provided by helium phase separation
can change the timescales for formation and settling of ammonia clouds by
several Gyr. We discuss how correctly incorporating stellar irradiation into
giant planet atmosphere and albedo modeling may lead to a consistent
evolutionary history for Jupiter and Saturn.Comment: 22 pages, including 14 figures. Accepted to the Astrophysical Journa
A Theory for the Radius of the Transiting Giant Planet HD 209458b
Using a full frequency-dependent atmosphere code that can incorporate
irradiation by a central primary star, we calculate self-consistent boundary
conditions for the evolution of the radius of the transiting planet HD 209458b.
Using a well-tested extrasolar giant planet evolutionary code, we then
calculate the behavior of this planet's radius with age. The measured radius is
in fact a transit radius that resides high in HD 209458b's inflated atmosphere.
Using our derived atmospheric and interior structures, we find that irradiation
plus the proper interpretation of the transit radius can yield a theoretical
radius that is within the measured error bars. We conclude that if HD 209458b's
true transit radius is at the lower end of the measured range, an extra source
of core heating power is not necessary to explain the transit observations.Comment: 6 pages in emulateapj format, plus 2 figures (one color), accepted to
the Astrophysical Journa
Andreev's Theorem on hyperbolic polyhedra
In 1970, E. M. Andreev published a classification of all three-dimensional
compact hyperbolic polyhedra having non-obtuse dihedral angles. Given a
combinatorial description of a polyhedron, , Andreev's Theorem provides five
classes of linear inequalities, depending on , for the dihedral angles,
which are necessary and sufficient conditions for the existence of a hyperbolic
polyhedron realizing with the assigned dihedral angles. Andreev's Theorem
also shows that the resulting polyhedron is unique, up to hyperbolic isometry.
Andreev's Theorem is both an interesting statement about the geometry of
hyperbolic 3-dimensional space, as well as a fundamental tool used in the proof
for Thurston's Hyperbolization Theorem for 3-dimensional Haken manifolds. It is
also remarkable to what level the proof of Andreev's Theorem resembles (in a
simpler way) the proof of Thurston.
We correct a fundamental error in Andreev's proof of existence and also
provide a readable new proof of the other parts of the proof of Andreev's
Theorem, because Andreev's paper has the reputation of being ``unreadable''.Comment: To appear les Annales de l'Institut Fourier. 47 pages and many
figures. Revision includes significant modification to section 4, making it
shorter and more rigorous. Many new references include
Research approaches to alleviation of airport-community noise
Airport-community noise reduction problem
Buoyancy waves in Pluto's high atmosphere: Implications for stellar occultations
We apply scintillation theory to stellar signal fluctuations in the
high-resolution, high signal/noise, dual-wavelength data from the MMT
observation of the 2007 March 18 occultation of P445.3 by Pluto. A well-defined
high wavenumber cutoff in the fluctuations is consistent with viscous-thermal
dissipation of buoyancy waves (internal gravity waves) in Pluto's high
atmosphere, and provides strong evidence that the underlying density
fluctuations are governed by the gravity-wave dispersion relation.Comment: Accepted 18 June 2009 for publication in Icaru
Cumulant expansion of the periodic Anderson model in infinite dimension
The diagrammatic cumulant expansion for the periodic Anderson model with
infinite Coulomb repulsion () is considered here for an hypercubic
lattice of infinite dimension (). The same type of simplifications
obtained by Metzner for the cumulant expansion of the Hubbard model in the
limit of , are shown to be also valid for the periodic Anderson
model.Comment: 13 pages, 7 figures.ps. To be published in J. Phys. A: Mathematical
and General (1997
- …