6,979 research outputs found

    Effect of Particle-Hole Asymmetry on the Mott-Hubbard Metal-Insulator Transition

    Full text link
    The Mott-Hubbard metal-insulator transition is one of the most important problems in correlated electron systems. In the past decade, much progress has been made on examining a particle-hole symmetric form of the transition in the Hubbard model with dynamical mean field theory where it was found that the electronic self energy develops a pole at the transition. We examine the particle-hole asymmetric metal-insulator transition in the Falicov-Kimball model, and find that a number of features change when the noninteracting density of states has a finite bandwidth. Since, generically particle-hole symmetry is broken in real materials, our results have an impact on understanding the metal-insulator transition in real materials.Comment: 5 pages, 3 figure

    Fractional Aharonov-Bohm effect in mesoscopic rings

    Full text link
    We study the effects of correlations on a one dimensional ring threaded by a uniform magnetic flux. In order to describe the interaction between particles, we work in the framework of the U ∞\infty Hubbard and tt-JJ models. We focus on the dilute limit. Our results suggest the posibility that the persistent current has an anomalous periodicity Ï•0/p\phi_{0}/p, where pp is an integer in the range 2≤p≤Ne2\leq p\leq N_{e} (NeN_{e} is the number of particles in the ring and Ï•0\phi_{0} is the flux quantum). We found that this result depends neither on disorder nor on the detailed form of the interaction, while remains the on site infinite repulsion.Comment: 14 pages (Revtex), 5 postscript figures. Send e-mail to: [email protected]

    Compressibility of the Two-Dimensional infinite-U Hubbard Model

    Full text link
    We study the interactions between the coherent quasiparticles and the incoherent Mott-Hubbard excitations and their effects on the low energy properties in the U=∞U=\infty Hubbard model. Within the framework of a systematic large-N expansion, these effects first occur in the next to leading order in 1/N. We calculate the scattering phase shift and the free energy, and determine the quasiparticle weight Z, mass renormalization, and the compressibility. It is found that the compressibility is strongly renormalized and diverges at a critical doping δc=0.07±0.01\delta_c=0.07\pm0.01. We discuss the nature of this zero-temperature phase transition and its connection to phase separation and superconductivity.Comment: 4 pages, 3 eps figures, final version to appear in Phys. Rev. Let

    An Application Of Machine Learning Methods To The Derivation Of Exposure-Response Curves For Respiratory Outcomes

    Get PDF
    Analyses of epidemiological studies of the association between short-term changes in air pollution and health outcomes have not sufficiently discussed the degree to which the statistical models chosen for these analyses reflect what is actually known about the true data-generating distribution. We present a method to estimate population-level ambient air pollution (NO2) exposure-health (wheeze in children with asthma) response functions that is not dependent on assumptions about the data-generating function that underlies the observed data and which focuses on a specific scientific parameter of interest (the marginal adjusted association of exposure on probability of wheeze, over a grid of possible exposure values). We show that this approach provides a more nuanced summary of the data than more typical statistical methods used in air pollution epidemiology and epidemiological studies in general

    Climate or rural development policy?

    Get PDF
    Being heavily energy dependent, it is not much of a surprise that Europe pays special attention to reducing the use of fossil fuels. Each one of the ten new member states is characterized by relatively low per capita energy consumption and relatively low energy efficiency, and the share of renewables in their energy mix tends to be low, too. The paper examines the problem when policy measures create a decrease in environmental capital instead of an increase. In this case it hardly seems justified to talk about environmental protection. The authors describe a case of a Hungarian rapeseed oil mill which would not be of too much interest on its own but given that almost all similar plants went bankrupt, there are some important lessons to learn from its survival. The enterprise the authors examined aimed at establishing a micro-regional network. They completed a brown-field development to establish a small plant on the premises of a former large agricultural cooperative. By partnering with the former employees and suppliers of the sometime cooperative, they enjoyed some benefits which all the other green-field businesses focusing on fuel production could not. The project improved food security, energy security and population retention as well

    'Alive after five' : constructing the neoliberal night in Newcastle upon Tyne.

    Get PDF
    The development of the ‘night-time economy’ in the UK through the 1990s has been associated with neoliberal urban governance. Academics have, however, begun to question the use and the scope of the concept ‘neoliberalism’. In this paper, I identify two common approaches to studying neoliberalism, one exploring neoliberalism as a series of policy networks, the other exploring neoliberalism as the governance of subjectivities. I argue that to understand the urban night, we need to explore both these senses of ‘neoliberalism’. As a case study, I take the ‘Alive After Five’ project, organised by the Business Improvement District in Newcastle-upon-Tyne, which sought to extend shopping hours in order to encourage more people to use the city at night. Drawing from Actor-Network-Theory, I explore the planning, the translation, and the practice of this new project. In doing so, I explore the on-going nature and influence of neoliberal policy on the urban night in the UK

    Towards analytic description of a transition from weak to strong coupling regime in correlated electron systems. I. Systematic diagrammatic theory with two-particle Green functions

    Full text link
    We analyze behavior of correlated electrons described by Hubbard-like models at intermediate and strong coupling. We show that with increasing interaction a pole in a generic two-particle Green function is approached. The pole signals metal-insulator transition at half filling and gives rise to a new vanishing ``Kondo'' scale causing breakdown of weak-coupling perturbation theory. To describe the critical behavior at the metal-insulator transition a novel, self-consistent diagrammatic technique with two-particle Green functions is developed. The theory is based on the linked-cluster expansion for the thermodynamic potential with electron-electron interaction as propagator. Parquet diagrams with a generating functional are derived. Numerical instabilities due to the metal-insulator transition are demonstrated on simplifications of the parquet algebra with ring and ladder series only. A stable numerical solution in the critical region is reached by factorization of singular terms via a low-frequency expansion in the vertex function. We stress the necessity for dynamical vertex renormalizations, missing in the simple approximations, in order to describe the critical, strong-coupling behavior correctly. We propose a simplification of the full parquet approximation by keeping only most divergent terms in the asymptotic strong-coupling region. A qualitatively new, feasible approximation suitable for the description of a transition from weak to strong coupling is obtained.Comment: 17 pages, 4 figures, REVTe
    • …
    corecore