133 research outputs found
The matching rule of Panum’s limiting case and its influencing factors
IntroductionPanum’s limiting case is one of the typical configurations of monocular occlusion region. The matching rule of Panum’s limiting case is the key to understanding how monocular occlusion region produces stereopsis. There are currently two main views on the matching rule of Panum’s limiting case, namely double fusion and uniqueness constraint. This paper further discusses its matching mechanism on the basis of previous studies.MethodsIn this study, fold line Panum’s stimuli were used to study the matching rule of Panum’s limiting case. In Experiment 1, fixation position was adopted to present the stimulus in a short time to explore the matching rules in Panum’s limiting case. In Experiment 2, the effect of fixation position on Panum’s limiting case matching results was further investigated.ResultsThe results of Experiment 1 show that when stimuli are presented in a short period of time, the reported result that a single feature in one eye may be matched alternately with two features in the other eye. This matching rule is called “fast alternative matching” in this article. The results of Experiment 2 results show that the position of the fixation could affect the matching result of participants.ConclusionIn conclusion, the matching rule of Panum’s limiting case is fast alternative matching, and the matching result is related to the attention state of the participant. These results not only provide a new perspective for matching rules in Panum’s limiting case, but also show that depth perception results in stereopsis can be influenced by top-down cognitive processing. This study provides a theoretical basis for studying the formation of stereopsis in the monocular region to a certain extent. In summary, the matching rule of Panum’s limiting case is fast alternative matching. In previous studies, the perceived result of double fusion may be caused by fast alternative matching. Also, the matching results are related to the participant’s state of attention, which suggests that the depth perception results of stereopsis are influenced by top-down cognitive processing
Quantitative risk assessment of non-typhoidal Salmonella enterica in pork products
Non-typhoidal Salmonella enterica is one of most important foodborne pathogens in the world. It infects humans through contaminated poultry and livestock meats. Published literature were reviewed to better understand quantitative microbiological risk assessment (QMRA) of non-typhoidal Salmonella enterica in pork products, especially the models commonly used. The challenges of QMRA of non-typhoidal Salmonella enterica in pork in China were analyzed, which could be the reference for the researches to be conducted in the future
The dependence of new particle formation rates on the interaction between cluster growth, evaporation, and condensation sink
New particle formation (NPF) is one of the major contributors to atmospheric aerosol number concentrations. The initial step of NPF includes the formation and growth of small clusters, their evaporation and loss to pre-existing particles (characterized by the condensation sink, CS). In the polluted atmospheric boundary layer, the high environmental CS suppresses NPF and it can work synergistically with evaporation to further reduce the NPF rates. In this study, to quantitatively include CS into NPF analysis, we make simplifications to the cluster balance equations and develop approximate equations for the NPF rates in the presence of pre-existing particles, which are applicable to nucleation mechanisms that can be represented by a nonbranched nucleation pathway. The developed equations show that the proportion of clusters that finally lead to new particle formation is given by the cluster-specific ratio of growth rate/CS | evaporation rate | growth rate. As a result, the cumulative product of this ratio for all clusters in the nucleation pathway determines the NPF rates. By comparing with benchmark cluster dynamics simulations of sulfuric acid-dimethylamine and sulfuric acid-ammonia nucleation systems, the developed equations were confirmed to give good estimates of the NPF rates and approximately capture the dependency of NPF rates on CS and nucleating vapor concentrations. The CS dependency predicted by the developed equations shows larger deviations from the simulations when the cluster evaporation rates are high, i.e., when the underlying assumptions of the equations are not satisfied. The equations were also found to be in good agreement with atmospheric NPF rates measured in long-term field observations in urban Beijing.Peer reviewe
Genome-wide analysis of the maternal-to-zygotic transition in Drosophila primordial germ cells
Background: During the maternal-to-zygotic transition (MZT) vast changes in the embryonic transcriptome are produced by a combination of two processes: elimination of maternally provided mRNAs and synthesis of new transcripts from the zygotic genome. Previous genome-wide analyses of the MZT have been restricted to whole embryos. Here we report the first such analysis for primordial germ cells (PGCs), the progenitors of the germ-line stem cells. Results: We purified PGCs from Drosophila embryos, defined their proteome and transcriptome, and assessed the content, scale and dynamics of their MZT. Transcripts encoding proteins that implement particular types of biological functions group into nine distinct expression profiles, reflecting coordinate control at the transcriptional and posttranscriptional levels. mRNAs encoding germ-plasm components and cell-cell signaling molecules are rapidly degraded while new transcription produces mRNAs encoding the core transcriptional and protein synthetic machineries. The RNA-binding protein Smaug is essential for the PGC MZT, clearing transcripts encoding proteins that regulate stem cell behavior, transcriptional and posttranscriptional processes. Computational analyses suggest that Smaug and AU-rich element binding proteins function independently to control transcript elimination. Conclusions: The scale of the MZT is similar in the soma and PGCs. However, the timing and content of their MZTs differ, reflecting the distinct developmental imperatives of these cell types. The PGC MZT is delayed relative to that in the soma, likely because relief of PGC-specific transcriptional silencing is required for zygotic genome activation as well as for efficient maternal transcript clearance.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000305391700004&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701Biotechnology & Applied MicrobiologyGenetics & HereditySCI(E)20ARTICLE2null1
Implications of inflammatory cell death-related IFNG and co-expressed RNAs (AC006369.1 and CCR7) in breast carcinoma prognosis, and anti-tumor immunity
Objective: Interferon-Îł (IFN-Îł) encoded by IFNG gene is a pleiotropic molecule linked with inflammatory cell death mechanisms. This work aimed to determine and characterize IFNG and co-expressed genes, and to define their implications in breast carcinoma (BRCA).Methods: Transcriptome profiles of BRCA were retrospectively acquired from public datasets. Combination of differential expression analysis with WGCNA was conducted for selecting IFNG-co-expressed genes. A prognostic signature was generated through Cox regression approaches. The tumor microenvironment populations were inferred utilizing CIBERSORT. Epigenetic and epitranscriptomic mechanisms were also probed.Results: IFNG was overexpressed in BRCA, and connected with prolonged overall survival and recurrence-free survival. Two IFNG-co-expressed RNAs (AC006369.1, and CCR7) constituted a prognostic model that acted as an independent risk factor. The nomogram composed of the model, TNM, stage, and new event owned the satisfying efficacy in BRCA prognostication. IFNG, AC006369.1, and CCR7 were closely linked with the tumor microenvironment components (e.g., macrophages, CD4/CD8 T cells, NK cells), and immune checkpoints (notably PD1/PD-L1). Somatic mutation frequencies were 6%, and 3% for CCR7, and IFNG, and high amplification potentially resulted in their overexpression in BRCA. Hypomethylated cg05224770 and cg07388018 were connected with IFNG and CCR7 upregulation, respectively. Additionally, transcription factors, RNA-binding proteins, and non-coding RNAs possibly regulated IFNG and co-expressed genes at the transcriptional and post-transcriptional levels.Conclusion: Collectively, our work identifies IFNG and co-expressed genes as prognostic markers for BRCA, and as possible therapeutic targets for improving the efficacy of immunotherapy
- …