23 research outputs found

    Kaposi's Sarcoma Herpesvirus Upregulates Aurora A Expression to Promote p53 Phosphorylation and Ubiquitylation

    Get PDF
    Aberrant expression of Aurora A kinase has been frequently implicated in many cancers and contributes to chromosome instability and phosphorylation-mediated ubiquitylation and degradation of p53 for tumorigenesis. Previous studies showed that p53 is degraded by Kaposi's sarcoma herpesvirus (KSHV) encoded latency-associated nuclear antigen (LANA) through its SOCS-box (suppressor of cytokine signaling, LANASOCS) motif-mediated recruitment of the EC5S ubiquitin complex. Here we demonstrate that Aurora A transcriptional expression is upregulated by LANA and markedly elevated in both Kaposi's sarcoma tissue and human primary cells infected with KSHV. Moreover, reintroduction of Aurora A dramatically enhances the binding affinity of p53 with LANA and LANASOCS-mediated ubiquitylation of p53 which requires phosphorylation on Ser215 and Ser315. Small hairpin RNA or a dominant negative mutant of Aurora A kinase efficiently disrupts LANA-induced p53 ubiquitylation and degradation, and leads to induction of p53 transcriptional and apoptotic activities. These studies provide new insights into the mechanisms by which LANA can upregulate expression of a cellular oncogene and simultaneously destabilize the activities of the p53 tumor suppressor in KSHV-associated human cancers

    HPV infection and genetic alterations in esophageal squamous cell carcinoma in the Chinese population

    No full text
    published_or_final_versionAnatomyDoctoralDoctor of Philosoph

    Proteomic Analysis of the Kaposi's Sarcoma-Associated Herpesvirus Terminal Repeat Element Binding Proteins

    No full text
    Terminal repeat (TR) elements of Kaposi's sarcoma-associated herpesvirus (KSHV), the potential origin sites of KSHV replication, have been demonstrated to play important roles in viral replication and transcription and are most likely also critical for the segregation of the KSHV genome to daughter cells. To search for the cellular proteins potentially involved in KSHV genome maintenance, we performed affinity chromatography analysis, using KSHV TR DNA as the affinity ligand. Proteomic analysis was then carried out to identify the TR-interacting proteins. We identified a total of 123 proteins from both KSHV-positive and -negative cells, among which most were identified exclusively from KSHV-positive cells. These proteins were categorized as proliferation/cell cycle regulatory proteins, proteins involved in spliceosome components, such as heterogeneous nuclear ribonuclear proteins, the DEAD/H family, the switch/sucrose nonfermenting protein family, splicing factors, RNA binding proteins, transcription regulation proteins, replication factors, modifying enzymes, and a number of proteins that could not be broadly categorized. To support the proteomic results, the presence of four candidate proteins, ATR, BRG1, NPM1 and PARP-1, in the elutions was further characterized in this study. The binding and colocalization of these proteins with the TR were verified using chromatin immunoprecipitation and immunofluorescence in situ hybridization analysis. These newly identified TR binding proteins provide a number of clues and potential links to understanding the mechanisms regulating the replication, transcription, and genome maintenance of KSHV. This study will facilitate the generation and testing of new hypotheses to further our understanding of the mechanisms involved in KSHV persistence and its associated pathogenesis

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded Latency-Associated Nuclear Antigen Induces Chromosomal Instability through Inhibition of p53 Function

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) is predominantly associated with three human malignancies, KS, primary effusion lymphoma, and multicentric Castleman's disease. These disorders are linked to genomic instability, known to be a crucial component of the oncogenic process. Latency-associated nuclear antigen (LANA), encoded by open reading frame 73 of the KSHV genome, is a latent protein consistently expressed in all KSHV-associated diseases. LANA is important in viral genome maintenance and is associated with cellular and viral proteins to regulate viral and cellular gene expression. LANA interacts with the tumor suppressor genes p53 and pRb, indicating that LANA may target these proteins and promote oncogenesis. In this study, we generated cell lines which stably expressed LANA to observe the effects of LANA expression on cell phenotype. LANA expression in these stable cell lines showed a dramatic increase in chromosomal instability, indicated by the presence of increased multinucleation, micronuclei, and aberrant centrosomes. In addition, these stable cell lines demonstrated an increased proliferation rate and as well as increased entry into S phase in both stable and transiently transfected LANA-expressing cells. Additionally, p53 transcription and its transactivation activity were suppressed by LANA expression in a dose-dependent manner. LANA may therefore promote chromosomal instability by suppressing the functional activities of p53, thereby facilitating KSHV-mediated pathogenesis and cancer

    A Potential α-Helix Motif in the Amino Terminus of LANA Encoded by Kaposi's Sarcoma-Associated Herpesvirus Is Critical for Nuclear Accumulation of HIF-1α in Normoxia▿

    No full text
    Hypoxia-inducible factor 1 (HIF-1) is a ubiquitously expressed transcriptional regulator involved in induction of numerous genes associated with angiogenesis and tumor growth. Kaposi's sarcoma, associated with increased angiogenesis, is a highly vascularized, endothelial cell-derived tumor. Previously, we have shown that the latency-associated nuclear antigen (LANA) encoded by Kaposi's sarcoma-associated herpesvirus (KSHV) targets the HIF-1α suppressors von Hippel-Lindau protein and p53 for degradation via its suppressor of cytokine signaling-box motif, which recruits the EC5S ubiquitin complex. Here we further show that HIF-1α was aberrantly accumulated in KSHV latently infected primary effusion lymphoma (PEL) cells, as well as HEK293 cells infected with KSHV, and also show that a potential α-helical amino-terminal domain of LANA was important for HIF-1α nuclear accumulation in normoxic conditions. Moreover, we have now determined that this association was dependent on the residues 46 to 89 of LANA and the oxygen-dependent degradation domain of HIF-1α. Introduction of specific small interfering RNA against LANA into PEL cells also resulted in a diminished nuclear accumulation of HIF-1α. Therefore, these data show that LANA can function not only as an inhibitor of HIF-1α suppressor proteins but can also induce nuclear accumulation of HIF-1α during KSHV latent infection

    Kaposi's Sarcoma-Associated Herpesvirus-Encoded LANA Can Interact with the Nuclear Mitotic Apparatus Protein To Regulate Genome Maintenance and Segregation▿ †

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) genomes are tethered to the host chromosomes and partitioned faithfully into daughter cells with the host chromosomes. The latency-associated nuclear antigen (LANA) is important for segregation of the newly synthesized viral genomes to the daughter nuclei. Here, we report that the nuclear mitotic apparatus protein (NuMA) and LANA can associate in KSHV-infected cells. In synchronized cells, NuMA and LANA are colocalized in interphase cells and separate during mitosis at the beginning of prophase, reassociating again at the end of telophase and cytokinesis. Silencing of NuMA expression by small interfering RNA and expression of LGN and a dominant-negative of dynactin (P150-CC1), which disrupts the association of NuMA with microtubules, resulted in the loss of KSHV terminal-repeat plasmids containing the major latent origin. Thus, NuMA is required for persistence of the KSHV episomes in daughter cells. This interaction between NuMA and LANA is critical for segregation and maintenance of the KSHV episomes through a temporally controlled mechanism of binding and release during specific phases of mitosis

    Kaposi's Sarcoma-Associated Herpesvirus Latent Protein LANA Interacts with HIF-1α To Upregulate RTA Expression during Hypoxia: Latency Control under Low Oxygen Conditions

    No full text
    Hypoxia can induce lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) in primary effusion lymphoma (PEL) cells. However, the molecular mechanism of lytic reactivation of KSHV by hypoxia remains unclear. Here we show that the latency-associated nuclear antigen (LANA), which plays a crucial role in modulating viral and cellular gene expression, directly associated with a low oxygen responder, hypoxia-inducible factor-1α (HIF-1α). LANA enhanced not only the transcriptional activities of HIF-1α but also its mRNA level. Coimmunoprecipitation and immunofluorescence studies documented a physical interaction between LANA and HIF-1α in transiently transfected 293T cells as well as in PEL cell lines during hypoxia. Through sequence analysis, several putative hypoxia response elements (HRE-1 to -6) were identified in the essential lytic gene Rta promoter. Reporter assays showed that HRE-2 (−1130 to −1123) and HRE-5 and HRE-6 (+234 to +241 and +812 to +820, respectively, within the intron sequence) were necessary and sufficient for the LANA-mediated HIF-1α response. Electrophoretic mobility shift assays showed HIF-1α-dependent binding of a LANA protein complex specifically to the HRE-2, -5, and -6 motifs within the promoter regulatory sequences. This study demonstrates that hypoxia-induced KSHV lytic replication is mediated at least in part through cooperation of HIF-1α with LANA bound to the HRE motifs of the Rta promoter

    Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Recruits Uracil DNA Glycosylase 2 at the Terminal Repeats and Is Important for Latent Persistence of the Virus

    No full text
    Latency-associated nuclear antigen (LANA) of KSHV is expressed in all forms of Kaposi's sarcoma-associated herpesvirus (KSHV)-mediated tumors and is important for TR-mediated replication and persistence of the virus. LANA does not exhibit any enzymatic activity by itself but is critical for replication and maintenance of the viral genome. To identify LANA binding proteins, we used a LANA binding sequence 1 DNA affinity column and determined the identities of a number of proteins associated with LANA. One of the identified proteins was uracil DNA glycosylase 2 (UNG2). UNG2 is important for removing uracil residues yielded after either misincorporation of dUTP during replication or deamination of cytosine. The specificity of the ′LANA-UNG2 interaction was confirmed by using a scrambled DNA sequence affinity column. Interaction of LANA and UNG2 was further confirmed by in vitro binding and coimmunoprecipitation assays. Colocalization of these proteins was also detected in primary effusion lymphoma (PEL) cells, as well as in a cotransfected KSHV-negative cell line. UNG2 binds to the carboxyl terminus of LANA and retains its enzymatic activity in the complex. However, no major effect on TR-mediated DNA replication was observed when a UNG2-deficient (UNG(−/−)) cell line was used. Infection of UNG(−/−) and wild-type mouse embryonic fibroblasts with KSHV did not reveal any difference; however, UNG(−/−) cells produced a significantly reduced number of virion particles after induction. Interestingly, depletion of UNG2 in PEL cells with short hairpin RNA reduced the number of viral genome copies and produced infection-deficient virus

    Highway constructions on the Qinghai-Tibet Plateau: Challenge, research and practice

    No full text
    Summary: Highway constructions on the Qinghai-Tibet Plateau (QTP) face great challenges induced by the unique local environmental, geological, and engineering conditions. The large area of permafrost, great temperature variability, strong UV rays, and complex geological conditions are the major factors that adversely influence the long-term performance of pavement systems. Since 1960s, Chinese engineers and researchers have started conducting research on the QTP to enhance the performance and durability of pavement systems. The present paper provide a comprehensive review of challenge, research and practice of highway constructions on the QTP including the special environmental and geological conditions, history of highway constructions on the QTP, major challenges and the state-of-the-art technology of subgrade constructions on permafrost, developments of the pavement structures and materials, performance prediction and maintenance methods of pavement surfaces, and applications of the research achievements on the first expressway on the QTP (i.e., Gongyu Expressway). Based on the comprehensive literature review, it can be found that (1) frost heave and thaw weakening induced subgrade disease and longitudinal cracks on the pavement surface are complex coupled water-thermal-load problems. Engineering solutions are focusing on active cooling and thermal insulation methods, which can help to reduce temperature variations in the subgrade and thus improving its stability, (2) the harsh environmental and construction conditions may reduce the early strength and induce premature damage of cement-treated base materials. Some field validations showed that geocell-reinforced or asphalt-treated flexible base materials can provide better long-term performance, (3) the large temperature variability and strong UV rays can significantly accelerate aging of asphalt binders and greatly reduce the service life of asphalt mixtures. Various binder modification methods were developed for improving their viscoelasticity and enhance the low-temperature cracking resistance of pavement surface materials but are still lack of field validation data and comparisons of their life cycle costs. Therefore, it is recommended that a demonstration research project build test sections to examine a range of pavement structures and materials, and compare their long-term performance and life cycle costs, which can serve as important reference for future highway constructions on the QTP
    corecore