6 research outputs found

    Nanoparticles from Gantrez® AN-poly(ethylene glycol) conjugates as carriers for oral delivery of docetaxel

    Get PDF
    The oral delivery of docetaxel (DTX) is challenging due to a low bioavailability, related to an important pre-systemic metabolism. With the aim of improving the bioavailability of this cytotoxic agent, nanoparticles from conjugates based on the copolymer of methyl vinyl ether and maleic anhydride (poly(anhydride)) and two different types of PEG, PEG2000 (PEG2) or methoxyPEG2000 (mPEG2), were evaluated. Nanoparticles, with a DTX loading close to 10%, were prepared by desolvation and stabilized with calcium, before purification and lyophilization. For the pharmacokinetic study, nanoparticles were orally administered to mice at a single dose of 30 mg/kg. The plasma levels of DTX were high, prolonged in time and, importantly, quantified within the therapeutic window. The relative oral bioavailability was calculated to be up to 56% when DTX was loaded in nanoparticles from poly(anhydride)-mPEG2000 conjugate (DTX-NP-mPEG2). Finally, a comparative toxicity study between equitoxic doses of free iv DTX and oral DTX-NP-mPEG2 was conducted in mice. Animals orally treated with DTX-loaded nanoparticles displayed less severe signs of hypersensitivity reactions, peripheral neurotoxicity, myelosuppression and hepatotoxicity than free iv docetaxel. In summary, poly(anhydride)-PEG conjugate nanoparticles appears to be adequate carries for the oral delivery of docetaxel

    Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin

    Get PDF
    Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solu-bility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-beta-CD or methoxy-PEG (m-PEG) to the polymer backbone of GantrezTM AN, were synthetized and characterized. Both excipients (m -PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to-35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nano-particles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP

    Molecular buckets: cyclodextrins for oral cancer therapy

    Get PDF
    The oral route is preferred by patients for drug administration due to its convenience, resulting in improved compliance. Unfortunately, for a number of drugs (e.g., anticancer drugs), this route of administration remains a challenge. Oral chemotherapy may be an attractive option and especially appropriate for chronic treatment of cancer. However, this route of administration is particularly complicated for the administration of anticancer drugs ascribed to Class IV of the Biopharmaceutical Classification System. This group of compounds is characterized by low aqueous solubility and low intestinal permeability. This review focuses on the use of cyclodextrins alone or in combination with bioadhesive nanoparticles for oral delivery of drugs. The state-of-the-art technology and challenges in this area is also discussed

    Regulation of markers of synaptic function in mouse models of depression: chronic mild stress and decreased expression of VGLUT1

    Get PDF
    Depression has been linked to failure in synaptic plasticity originating from environmental and/or genetic risk factors. The chronic mild stress (CMS) model regulates the expression of synaptic markers of neurotransmitter function and associated depressive-like behaviour. Moreover, mice heterozygous for the synaptic vesicle protein (SVP) vesicular glutamate transporter 1 (VGLUT1), have been proposed as a genetic model of deficient glutamate function linked to depressive-like behaviour. Here, we aimed to identify, in these two experimental models, mechanisms of failure in synaptic plasticity, common to stress and impaired glutamate function. First, we show that CMS induced a transient decrease of different plasticity markers (VGLUT1, synapsin 1, sinaptophysin, rab3A and activity regulated cytoskeletal protein Arc) but a long-lasting decrease of the brain derived neurotrophic factor (BDNF) as well as depressive-like behaviour. The immediate early gene (IEG) Arc was also downregulated in VGLUT1+/- heterozygous mice. In contrast, an opposite regulation of synapsin 1 was observed. Finally, both models showed a marked increase of cortical Arc response to novelty. Increased Arc response to novelty could be suggested as a molecular mechanism underlying failure to adapt to environmental changes, common to chronic stress and altered glutamate function. Further studies should investigate whether these changes are associated to depressive-like behaviour both in animal models and in depressed patients

    Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin

    No full text
    Camptothecin (CPT) exhibits a number of challenges for its oral administration, including a low aqueous solu-bility, a lactone ring susceptible to hydrolysis, and an affinity to the intestinal P-gp. The aim of this work was to evaluate nanoparticles from Gantrez-based conjugates as carriers for the oral delivery of CPT. For this purpose two different conjugates (G-mPEG and G-HPCD), obtained by the covalent binding of either HP-beta-CD or methoxy-PEG (m-PEG) to the polymer backbone of GantrezTM AN, were synthetized and characterized. Both excipients (m -PEG and HPCD) were selected due to their reported abilities to stabilize the lactone ring of CPT and disturb the effect of intestinal P-gp. The resulting nanoparticles (G-mPEG-NP and G-HPCD-NP) presented a similar size (about 200 nm) and zeta potential (close to-35 mV); although, G-mPEG-NP presented a higher CPT payload than G-HPCD-NP. On the contrary, in rats, nanoparticles based on Gantrez conjugates appeared to be capable of crossing the protective mucus layer and reach the intestinal epithelium, whereas conventional Gantrez nano-particles displayed a mucoadhesive profile. Finally, the pharmacokinetic study revealed that both formulations were able to enhance the relative oral bioavailability of CPT; although this value was found to be 2.6-times higher for G-mPEG-NP than for G-HPCD-NP

    Molecular buckets: cyclodextrins for oral cancer therapy

    No full text
    The oral route is preferred by patients for drug administration due to its convenience, resulting in improved compliance. Unfortunately, for a number of drugs (e.g., anticancer drugs), this route of administration remains a challenge. Oral chemotherapy may be an attractive option and especially appropriate for chronic treatment of cancer. However, this route of administration is particularly complicated for the administration of anticancer drugs ascribed to Class IV of the Biopharmaceutical Classification System. This group of compounds is characterized by low aqueous solubility and low intestinal permeability. This review focuses on the use of cyclodextrins alone or in combination with bioadhesive nanoparticles for oral delivery of drugs. The state-of-the-art technology and challenges in this area is also discussed
    corecore