1,750 research outputs found
Evidence of Klein tunneling in graphene p-n junctions
Transport through potential barriers in graphene is investigated using a set
of metallic gates capacitively coupled to graphene to modulate the potential
landscape. When a gate-induced potential step is steep enough, disorder becomes
less important and the resistance across the step is in quantitative agreement
with predictions of Klein tunneling of Dirac fermions up to a small correction.
We also perform magnetoresistance measurements at low magnetic fields and
compare them to recent predictions.Comment: Major changes made: 1) Taking into account properly the contribution
of the resistance of monopolar junctions to the odd part of the resistance.
To better present the results we use a fitting parameter for the amplitude of
screening in graphene. 2) Wrong data for the diffusive model in figures 3, 9
and 10 was plotted in former version. 3) Figure 5 moved to EPAP
A compact design for the Josephson mixer: the lumped element circuit
We present a compact and efficient design in terms of gain, bandwidth and
dynamical range for the Josephson mixer, the superconducting circuit performing
three-wave mixing at microwave frequencies. In an all lumped-element based
circuit with galvanically coupled ports, we demonstrate non degenerate
amplification for microwave signals over a bandwidth up to 50 MHz for a power
gain of 20 dB. The quantum efficiency of the mixer is shown to be about 70
and its saturation power reaches dBm.Comment: 5 pages, 4 figure
Measurement of the current-phase relation of superconducting atomic contacts
We have probed the current-phase relation of an atomic contact placed with a
tunnel junction in a small superconducting loop. The measurements are in
quantitative agreement with the predictions of a resistively shunted SQUID
model in which the Josephson coupling of the contact is calculated using the
independently determined transmissions of its conduction channels.Comment: to be published in Physical Review Letter
Contact resistance and shot noise in graphene transistors
Potential steps naturally develop in graphene near metallic contacts. We
investigate the influence of these steps on the transport in graphene Field
Effect Transistors. We give simple expressions to estimate the
voltage-dependent contribution of the contacts to the total resistance and
noise in the diffusive and ballistic regimes.Comment: 6 pages, 4 figures; Figs 3 and 4 completed and appendix adde
Non-degenerate, three-wave mixing with the Josephson ring modulator
The Josephson ring modulator (JRM) is a device, based on Josephson tunnel
junctions, capable of performing non-degenerate mixing in the microwave regime
without losses. The generic scattering matrix of the device is calculated by
solving coupled quantum Langevin equations. Its form shows that the device can
achieve quantum-limited noise performance both as an amplifier and a mixer.
Fundamental limitations on simultaneous optimization of performance metrics
like gain, bandwidth and dynamic range (including the effect of pump depletion)
are discussed. We also present three possible integrations of the JRM as the
active medium in a different electromagnetic environment. The resulting
circuits, named Josephson parametric converters (JPC), are discussed in detail,
and experimental data on their dynamic range are found to be in good agreement
with theoretical predictions. We also discuss future prospects and requisite
optimization of JPC as a preamplifier for qubit readout applications.Comment: 21 pages, 16 figures, 4 table
Generating Entangled Microwave Radiation Over Two Transmission Lines
Using a superconducting circuit, the Josephson mixer, we demonstrate the
first experimental realization of spatially separated two-mode squeezed states
of microwave light. Driven by a pump tone, a first Josephson mixer generates,
out of quantum vacuum, a pair of entangled fields at different frequencies on
separate transmission lines. A second mixer, driven by a -phase shifted
copy of the first pump tone, recombines and disentangles the two fields. The
resulting output noise level is measured to be lower than for vacuum state at
the input of the second mixer, an unambiguous proof of entanglement. Moreover,
the output noise level provides a direct, quantitative measure of entanglement,
leading here to the demonstration of 6 Mebit.s (Mega entangled bits per
second) generated by the first mixer.Comment: 5 pages, 4 figures. Supplementary Information can be found here as an
ancillary fil
Nonlinear magneto-optical rotation in optically thick media
Nonlinear magneto-optical rotation is a sensitive technique for measuring
magnetic fields. Here, the shot-noise-limited magnetometric sensitivity is
analyzed for the case of optically-thick media and high light power, which has
been the subject of recent experimental and theoretical investigations.Comment: 7 pages, 4 figure
- …