240 research outputs found
Loneliness / Togetherness : Interiority and connection under isolation
Inhabitantsâ perceptions can be greatly impacted when they are in an enforced space, a state of incarceration. That sense of confinement can cause mental or physical health issues on account of the loneliness, lack of interaction or confusion of time and space. Living through enforcement and isolation deeply affect human cognition and behavior. We can also easily find precedents of living through enforcement in the plots of films. By studying narrative, this thesis reconstructs domestic space by investigating the changes in our daily life after our current pandemic. A spatial sequence is created according to the relationwship among time, space and motion by manipulating light, material, spatial proportion/ position/ order, etc.
There is always fierce debate between the practice of public health and human free will. In fact, these two deeply affect each other. How do architecture and interior space respond to this issue and increase peopleâs willingness to stay home? A collective experience is created for this new social connection that doesnât require physical contact. With social distancing, people are still able to maintain the essential level of interaction with others through the design. By categorizing different clusters for different groups of people based on personal characteristics and daily routine, each community can have their own balcony type for interaction with their groupsâ of people. The interiority in each cluster is also designed based on the group type and their own narrativity. This project can be a model for future isolated social existence or any other living conditions with restriction
Global Stability for a Viral Infection Model with Saturated Incidence Rate
A viral infection model with saturated incidence rate and viral infection with delay is derived and analyzed; the incidence rate is assumed
to be a specific nonlinear form ÎČxv/(1+αv). The existence and uniqueness of equilibrium are proved. The basic reproductive number R0 is given. The model
is divided into two cases: with or without delay. In each case, by constructing
Lyapunov functionals, necessary and sufficient conditions are given to ensure
the global stability of the models
Tizoxanide pyridine monosolvate
In the title compound [systematic name: 2-hyÂdroxy-N-(5-nitro-1,3-thiaÂzol-2-yl)benzamide pyridine monosolvate], C10H7N3O4S·C5H5N, the dihedral angle between the pyridine and benzamide rings is 80.55â
(7)°. An intamolecular OâHâŻN hydrogen bond occurs in the tizoxanide. In the crystal, the components are linked by an OâHâŻN hydrogen bond, forming a zigzag chain along the c axis. Aromatic ÏâÏ interÂactions between inversion-related pyridine rings [centroidâcentroid distance = 3.803â
(6)â
Ă
] are also observed
Novel G-protein-coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea
BACKGROUND: The G-protein-coupled receptors (GPCRs) are one of the largest protein families in human and other animal genomes, but no more than 10 GPCRs have been characterized in fungi. Do fungi contain only this handful or are there more receptors to be discovered? We asked this question using the recently sequenced genome of the fungal plant pathogen Magnaporthe grisea. RESULTS: Proteins with significant similarity to fungus-specific and other eukaryotic GPCRs were identified in M. grisea. These included homologs of known fungal GPCRs, the cAMP receptors from Dictyostelium, and a steroid receptor mPR. We also identified a novel class of receptors typified by PTH11, a cell-surface integral membrane protein required for pathogenicity. PTH11 has seven transmembrane regions and an amino-terminal extracellular cysteine-rich EGF-like domain (CFEM domain), a characteristic also seen in human GPCRs. Sixty-one PTH11-related proteins were identified in M. grisea that shared a common domain with homologs in Neurospora crassa and other fungi belonging to this subphylum of the Ascomycota (the Pezizomycotina). None was detected in other fungal groups (Basidiomycota or other Ascomycota subphyla, including yeasts) or any other eukaryote. The subclass of PTH11 containing the CFEM domain is highly represented in M. grisea. CONCLUSION: In M. grisea we identified homologs of known GPCRs and a novel class of GPCR-like receptors specific to filamentous ascomycetes. A member of this new class, PTH11, is required for pathogenesis, thus suggesting roles in pathogenicity for other members. The identified classes constitute the largest number of GPCR-like proteins reported in fungi to date
Particle-Associated Polycyclic Aromatic Hydrocarbons (PAHs) in the Atmosphere of Hefei, China: Levels, Characterizations and Health Risks
Airborne PM2.5 and PM10 samples were collected in summertime (August 2015) and wintertime (December 2015-January 2016) in an industrial complex area in Hefei, China. The average concentrations of PM2.5 and PM10 (90.5 and 114.5 mu g/m(3), respectively) were higher than the regulated levels of China National Ambient Air Quality Standard (grade I) and the WHO Ambient (outdoor) Air Quality and Health Guideline Value. Seasonal variations in PM2.5/PM10 indicated that the secondary sources of particulate matters, formed by gas-to-particle conversion, were enhanced in summer due to longer time of solar radiation and higher temperature. The total concentrations of PM2.5- and PM10-associated PAHs were 5.89 and 17.70 ng/m(3) in summer as well as 63.41 and 78.26 ng/m(3) in winter, respectively. Both PM2.5- and PM10-associated PAHs were dominated by 4- to 6-ring PAHs, suggesting that the fossil fuel combustion and vehicle emissions were the primary sources of PAHs in atmospheric particulate matters in Hefei. The total concentration of PAHs had a slightly higher correlation coefficient with PM2.5 (R = 0.499, P < 0.05) than PM10 (R = 0.431, P > 0.05), indicating the higher association tendency of PAHs with PM2.5. The coefficient of divergence analysis showed that the compositions of PAH were quite different between summer and winter. Total BaP equivalent concentration (BaP-TEQ) for particulate-bound PAHs in winter (58.87 ng/m(3)) was higher than that in summer (5.53 ng/m(3)). In addition, particulate-bound PAHs in winter had an inhalation cancer risk (ICR) value of 2.8 x 10(-3), which was higher than the safe range (10(-4)-10(-6))
An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce.
We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species
Cover crops and chicken grazing in a winter fallow field improve soil carbon and nitrogen contents and decrease methane emissions
© The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zheng, H., Zhou, L., Wei, J., Tang, Q., Zou, Y., Tang, J., & Xu, H. Cover crops and chicken grazing in a winter fallow field improve soil carbon and nitrogen contents and decrease methane emissions. Scientific Reports, 10(1), (2020): 12607, doi:10.1038/s41598-020-69407-y.Using symbiotic farming methods [cover crops and chicken grazing (+ C)] in a winter fallow field, we found that the soil organic matter and total nitrogen of theâ+âC treatment were 5.2% and 26.6% higher, respectively, than those of a treatment with cover crops and no chicken grazing (â C). The annual rice grain yield of theâ+âC treatment was 3.8% higher than that of the â C treatment and 12.3% higher than that of the bare fallow field (CK), while the annual CH4 emissions of theâ+âC treatment were 26.9% lower than those of the â C treatment and 10.6% lower than those of the CK treatment. The 100-year global warming potential of theâ+âC treatment was 6.2% lower than that of the â C treatment. Therefore, the use of winter cover crops and chicken grazing in a winter fallow field was effective at reducing CH4 emissions and significantly improving soil nutrients and rice yield.This study was supported by the Earmarked Fund for China Agriculture Research System (CARS-01-26), the China-UK joint Red Soil Critical Zone project from the National Natural Science Foundation of China (Grant No. 41571130053), and Hunan âA Hundred Scholarsâ Program
Phosphoproteins regulated by heat stress in rice leaves
<p>Abstract</p> <p>Background</p> <p>High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (<it>Oryza sativa </it>L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored.</p> <p>Methods</p> <p>Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting.</p> <p>Results</p> <p>Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins.</p> <p>Conclusion</p> <p>Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-ÎČ, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H<sup>+</sup>-ATPase, remains unknown.</p
The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae
BACKGROUND: Transposable elements are abundant in the genomes of many filamentous fungi, and have been implicated as major contributors to genome rearrangements and as sources of genetic variation. Analyses of fungal genomes have also revealed that transposable elements are largely confined to distinct clusters within the genome. Their impact on fungal genome evolution is not well understood. Using the recently available genome sequence of the plant pathogenic fungus Magnaporthe oryzae, combined with additional bacterial artificial chromosome clone sequences, we performed a detailed analysis of the distribution of transposable elements, syntenic blocks, and other features of chromosome 7. RESULTS: We found significant levels of conserved synteny between chromosome 7 and the genomes of other filamentous fungi, despite more than 200 million years of divergent evolution. Transposable elements are largely restricted to three clusters located in chromosomal segments that lack conserved synteny. In contradiction to popular evolutionary models and observations from other model organism genomes, we found a positive correlation between recombination rate and the distribution of transposable element clusters on chromosome 7. In addition, the transposable element clusters are marked by more frequent gene duplications, and genes within the clusters have greater sequence diversity to orthologous genes from other fungi. CONCLUSION: Together, these data suggest that transposable elements have a profound impact on the M. oryzae genome by creating localized segments with increased rates of chromosomal rearrangements, gene duplications and gene evolution
Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study
BACKGROUND: Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. RESULTS: In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. CONCLUSIONS: Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users
- âŠ