123 research outputs found

    Emerging smart design of electrodes for micro-supercapacitors: a review

    Get PDF
    Owing to high power density and long cycle life, micro-supercapacitors (MSCs) are regarded as a prevalent energy storage unit for miniaturized electronics in modern life. A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life. To this end, designing electrodes in a “smart” way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs. In the past few years, considerable research efforts have been devoted to exploring new electrode materials for high capacitance, but designing clever configurations for electrodes has rarely been investigated from a structural point of view, which is also important for MSCs within a limited footprint area, in particular. This review article categorizes and arranges these “smart” design strategies of electrodes into three design concepts: layer-by-layer, scaffold-assisted and rolling origami. The corresponding strengths and challenges are comprehensively summarized, and the potential solutions to resolve these challenges are pointed out. Finally, the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined

    Updated insights into 3D architecture electrodes for micropower sources

    Get PDF
    Microbatteries (MBs) and microsupercapacitors (MSCs) are primary on-chip micropower sources that drive autonomous and stand-alone microelectronic devices for implementation of the Internet of Things (IoT). However, the performance of conventional MBs and MSCs is restricted by their 2D thin-film electrode design, and these devices struggle to satisfy the increasing IoT energy demands for high energy density, high power density, and long lifespan. The energy densities of MBs and MSCs can be improved significantly through adoption of a 2D thick-film electrode design; however, their power densities and lifespans deteriorate with increased electrode thickness. In contrast, 3D architecture electrodes offer remarkable opportunities to simultaneously improve MB and MSC energy density, power density, and lifespan. To date, various 3D architecture electrodes have been designed, fabricated, and investigated for MBs and MSCs. This review provides an update on the principal superiorities of 3D architecture electrodes over 2D thick-film electrodes in the context of improved MB and MSC energy density, power density, and lifespan. In addition, the most recent and representative progress in 3D architecture electrode development for MBs and MSCs is highlighted. Finally, present challenges are discussed and key perspectives for future research in this field are outlined

    FoveaBox: Beyond Anchor-based Object Detector

    Full text link
    We present FoveaBox, an accurate, flexible, and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations. In FoveaBox, an instance is assigned to adjacent feature levels to make the model more accurate.We demonstrate its effectiveness on standard benchmarks and report extensive experimental analysis. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance on the standard COCO and Pascal VOC object detection benchmark. More importantly, FoveaBox avoids all computation and hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. We believe the simple and effective approach will serve as a solid baseline and help ease future research for object detection. The code has been made publicly available at https://github.com/taokong/FoveaBox .Comment: IEEE Transactions on Image Processing, code at: https://github.com/taokong/FoveaBo

    Recent advances in 2D heterostructures as advanced electrode materials for potassium-ion batteries

    Get PDF
    Owing to the cost-effectiveness, Earth abundance, and suitable redox potential, potassium-ion batteries (PIBs) stand out as one of the best candidates for large-scale energy storage systems. However, the large radius of K+ and the unsatisfied specific capacity are the main challenges for their commercial applications. To address these challenges, constructing heterostructures by selecting and integrating 2D materials as host and other materials as guest are proposed as an emerging strategy to obtain electrode materials with high capacity and long lifespan, thus improving the energy storage capability of PIBs. Recently, numerous studies are devoted to developing 2D-based heterostructures as electrode materials for PIBs, and significant progress is achieved. However, there is a lack of a review article for systematically summarizing the recent advances and profoundly understanding the relationship between heterostructure electrodes and their performance. In this sense, it is essential to outline the promising advanced features, to summarize the electrochemical properties and performances, and to discuss future research focuses about 2D-based heterostructures in PIBs

    Nanoelectrode design from microminiaturized honeycomb monolith with ultrathin and stiff nanoscaffold for high-energy micro-supercapacitors

    Get PDF
    Downsizing the cell size of honeycomb monoliths to nanoscale would offer high freedom of nanostructure design beyond their capability for broad applications in different fields. However, the microminiaturization of honeycomb monoliths remains a challenge. Here, we report the fabrication of microminiaturized honeycomb monoliths-honeycomb alumina nanoscaffold- and thus as a robust nanostructuring platform to assemble active materials for microsupercapacitors. The representative honeycomb alumina nanoscaffold with hexagonal cell arrangement and 400 nm inter-cell spacing has an ultrathin but stiff nanoscaffold with only 16 ± 2 nm cell-wall-thickness, resulting in a cell density of 4.65 × 109 cells per square inch, a surface area enhancement factor of 240, and a relative density of 0.0784. These features allow nanoelectrodes based on honeycomb alumina nanoscaffold synergizing both effective ion migration and ample electroactive surface area within limited footprint. A microsupercapacitor is finally constructed and exhibits record high performance, suggesting the feasibility of the current design for energy storage devices

    Mass distribution for single-lined hot subdwarf stars in LAMOST

    Full text link
    Masses for 664 single-lined hot subdwarf stars identified in LAMOST were calculated by comparing synthetic fluxes from spectral energy distribution (SED) with observed fluxes from virtual observatory service. Three groups of hot subdwarf stars were selected from the whole sample according to their parallax precision to study the mass distributions. We found, that He-poor sdB/sdOB stars present a wide mass distribution from 0.1 to 1.0 M\mathrm{M}_{\odot} with a sharp mass peak around at 0.46 M\rm{M}_{\odot}, which is consistent with canonical binary model prediction. He-rich sdB/sdOB/sdO stars present a much flatter mass distribution than He-poor sdB/sdOB stars and with a mass peak around 0.42 M\mathrm{M}_{\odot}. By comparing the observed mass distributions to the predictions of different formation scenarios, we concluded that the binary merger channel, including two helium white dwarfs (He-WDs) and He-WD + main sequence (MS) merger, cannot be the only main formation channel for He-rich hot subdwarfs, and other formation channels such as the surviving companions from type Ia supernovae (SNe Ia) could also make impacts on producing this special population, especially for He-rich hot subdwarfs with masses less than 0.44 M\mathrm{M}_{\odot}. He-poor sdO stars also present a flatter mass distribution with an inconspicuous peak mass at 0.18 M\mathrm{M}_{\odot}. The similar mass - ΔRVmax\Delta RV_\mathrm{max} distribution between He-poor sdB/sdOB and sdO stars supports the scenario that He-poor sdO stars could be the subsequent evolution stage of He-poor sdB/sdOB stars.Comment: 38 pages, 13 figures, 3 tables, accepted for publication in Ap

    Electrical conductivity adjustment for interface capacitive-like storage in sodium-ion battery

    Get PDF
    Sodium-ion battery (SIB) is significant for grid-scale energy storage. However, a large radius of Na ions raises the difficulties of ion intercalation, hindering the electrochemical performance during fast charge/discharge. Conventional strategies to promote rate performance focus on the optimization of ion diffusion. Improving interface capacitive-like storage by tuning the electrical conductivity of electrodes is also expected to combine the features of the high energy density of batteries and the high power density of capacitors. Inspired by this concept, an oxide-metal sandwich 3D-ordered macroporous architecture (3DOM) stands out as a superior anode candidate for high-rate SIBs. Taking Ni-TiO2 sandwich 3DOM as a proof-of-concept, anatase TiO2 delivers a reversible capacity of 233.3 mAh g^-1 in half-cells and 210.1 mAh g^-1 in full-cells after 100 cycles at 50 mA g^-1. At the high charge/discharge rate of 5000 mA g^-1, 104.4 mAh g^-1 in half-cells and 68 mAh g^-1 in full-cells can also be obtained with satisfying stability. In-depth analysis of electrochemical kinetics evidence that the dominated interface capacitive-like storage enables ultrafast uptaking and releasing of Na-ions. This understanding between electrical conductivity and rate performance of SIBs is expected to guild future design to realize effective energy storage
    corecore