65 research outputs found

    Oral microbiome and risk of malignant esophageal lesions in a high-risk area of China: A nested case-control study.

    Get PDF
    OBJECTIVE: We aimed to prospectively evaluate the association of oral microbiome with malignant esophageal lesions and its predictive potential as a biomarker of risk. METHODS: We conducted a case-control study nested within a population-based cohort with up to 8 visits of oral swab collection for each subject over an 11-year period in a high-risk area for esophageal cancer in China. The oral microbiome was evaluated with 16S ribosomal RNA (rRNA) gene sequencing in 428 pre-diagnostic oral specimens from 84 cases with esophageal lesions of severe squamous dysplasia and above (SDA) and 168 matched healthy controls. DESeq analysis was performed to identify taxa of differential abundance. Differential oral species together with subject characteristics were evaluated for their potential in predicting SDA risk by constructing conditional logistic regression models. RESULTS: A total of 125 taxa including 37 named species showed significantly different abundance between SDA cases and controls (all P0.84. CONCLUSIONS: The oral microbiome may play an etiological and predictive role in esophageal cancer, and it holds promise as a non-invasive early warning biomarker for risk stratification for esophageal cancer screening programs

    Insight-HXMT observations of Swift J0243.6+6124 during its 2017-2018 outburst

    Full text link
    The recently discovered neutron star transient Swift J0243.6+6124 has been monitored by {\it the Hard X-ray Modulation Telescope} ({\it Insight-\rm HXMT). Based on the obtained data, we investigate the broadband spectrum of the source throughout the outburst. We estimate the broadband flux of the source and search for possible cyclotron line in the broadband spectrum. No evidence of line-like features is, however, found up to 150 keV\rm 150~keV. In the absence of any cyclotron line in its energy spectrum, we estimate the magnetic field of the source based on the observed spin evolution of the neutron star by applying two accretion torque models. In both cases, we get consistent results with B1013 GB\rm \sim 10^{13}~G, D6 kpcD\rm \sim 6~kpc and peak luminosity of >1039 erg s1\rm >10^{39}~erg~s^{-1} which makes the source the first Galactic ultraluminous X-ray source hosting a neutron star.Comment: publishe

    Overview to the Hard X-ray Modulation Telescope (Insight-HXMT) Satellite

    Full text link
    As China's first X-ray astronomical satellite, the Hard X-ray Modulation Telescope (HXMT), which was dubbed as Insight-HXMT after the launch on June 15, 2017, is a wide-band (1-250 keV) slat-collimator-based X-ray astronomy satellite with the capability of all-sky monitoring in 0.2-3 MeV. It was designed to perform pointing, scanning and gamma-ray burst (GRB) observations and, based on the Direct Demodulation Method (DDM), the image of the scanned sky region can be reconstructed. Here we give an overview of the mission and its progresses, including payload, core sciences, ground calibration/facility, ground segment, data archive, software, in-orbit performance, calibration, background model, observations and some preliminary results.Comment: 29 pages, 40 figures, 6 tables, to appear in Sci. China-Phys. Mech. Astron. arXiv admin note: text overlap with arXiv:1910.0443

    The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper

    Full text link
    The Large High Altitude Air Shower Observatory (LHAASO) project is a new generation multi-component instrument, to be built at 4410 meters of altitude in the Sichuan province of China, with the aim to study with unprecedented sensitivity the spec trum, the composition and the anisotropy of cosmic rays in the energy range between 1012^{12} and 1018^{18} eV, as well as to act simultaneously as a wide aperture (one stereoradiant), continuously-operated gamma ray telescope in the energy range between 1011^{11} and 101510^{15} eV. The experiment will be able of continuously surveying the TeV sky for steady and transient sources from 100 GeV to 1 PeV, t hus opening for the first time the 100-1000 TeV range to the direct observations of the high energy cosmic ray sources. In addition, the different observables (electronic, muonic and Cherenkov/fluorescence components) that will be measured in LHAASO will allow to investigate origin, acceleration and propagation of the radiation through a measurement of energy spec trum, elemental composition and anisotropy with unprecedented resolution. The remarkable sensitivity of LHAASO in cosmic rays physics and gamma astronomy would play a key-role in the comprehensive general program to explore the High Energy Universe. LHAASO will allow important studies of fundamental physics (such as indirect dark matter search, Lorentz invariance violation, quantum gravity) and solar and heliospheric physics. In this document we introduce the concept of LHAASO and the main science goals, providing an overview of the project.Comment: This document is a collaborative effort, 185 pages, 110 figure

    Impact of AlphaFold on Structure Prediction of Protein Complexes: The CASP15-CAPRI Experiment

    Get PDF
    We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homo-dimers, 3 homo-trimers, 13 hetero-dimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their 5 best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% for the targets compared to 8% two years earlier, a remarkable improvement resulting from the wide use of the AlphaFold2 and AlphaFold-Multimer software. Creative use was made of the deep learning inference engines affording the sampling of a much larger number of models and enriching the multiple sequence alignments with sequences from various sources. Wide use was also made of the AlphaFold confidence metrics to rank models, permitting top performing groups to exceed the results of the public AlphaFold-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem

    Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment

    Get PDF
    We present the results for CAPRI Round 54, the 5th joint CASP-CAPRI protein assembly prediction challenge. The Round offered 37 targets, including 14 homodimers, 3 homo-trimers, 13 heterodimers including 3 antibody-antigen complexes, and 7 large assemblies. On average ~70 CASP and CAPRI predictor groups, including more than 20 automatics servers, submitted models for each target. A total of 21 941 models submitted by these groups and by 15 CAPRI scorer groups were evaluated using the CAPRI model quality measures and the DockQ score consolidating these measures. The prediction performance was quantified by a weighted score based on the number of models of acceptable quality or higher submitted by each group among their five best models. Results show substantial progress achieved across a significant fraction of the 60+ participating groups. High-quality models were produced for about 40% of the targets compared to 8% two years earlier. This remarkable improvement is due to the wide use of the AlphaFold2 and AlphaFold2-Multimer software and the confidence metrics they provide. Notably, expanded sampling of candidate solutions by manipulating these deep learning inference engines, enriching multiple sequence alignments, or integration of advanced modeling tools, enabled top performing groups to exceed the performance of a standard AlphaFold2-Multimer version used as a yard stick. This notwithstanding, performance remained poor for complexes with antibodies and nanobodies, where evolutionary relationships between the binding partners are lacking, and for complexes featuring conformational flexibility, clearly indicating that the prediction of protein complexes remains a challenging problem

    Efficient Local Refinement near Parametric Boundaries Using kd-Tree Data Structure and Algebraic Level Sets

    No full text
    In analysis of problems with parametric spline boundaries that are immersed or inserted into an underlying domain, the discretization on the underlying domain usually does not conform to the inserted boundaries. While the fixed underlying discretization is of great convenience as the immersed boundaries evolve, the field approximations near the inserted boundaries require refinement in the underlying domain, as do the quadrature cells. In this paper, a kd-tree data structure together with a sign-based and/or distance-based refinement strategy is proposed for local refinement near the inserted boundaries as well as for adaptive quadrature near the boundaries. The developed algorithms construct and utilize implicit forms of parametric Non-Uniform Rational B-Spline (NURBS) surfaces to algebraically (and non-iteratively) estimate distance as well as sign relative to the inserted boundary. The kd-tree local refinement is demonstrated to produce fewer sub-cells for the same accuracy of solution as compared to the classical quad/oct tree-based subdivision. Consistent with the kd-tree data structure, we describe a new a priori refinement algorithm based on the signed and unsigned distance from the inserted boundary. We first demonstrate the local refinement strategy coupled with the the kd-tree data structure by constructing Truncated Hierarchical B-spline (THB-spline) “meshes”. We next demonstrate the accuracy and efficiency of the developed local refinement strategy through adaptive quadrature near NURBS boundaries inserted within volumetric three-dimensional NURBS discretizations
    corecore