141 research outputs found

    Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme

    Get PDF
    BACKGROUND: Gene expression profiling has become a useful biological resource in recent years, and it plays an important role in a broad range of areas in biology. The raw gene expression data, usually in the form of large matrix, may contain missing values. The downstream analysis methods that postulate complete matrix input are thus not applicable. Several methods have been developed to solve this problem, such as K nearest neighbor impute method, Bayesian principal components analysis impute method, etc. In this paper, we introduce a novel imputing approach based on the Support Vector Regression (SVR) method. The proposed approach utilizes an orthogonal coding input scheme, which makes use of multi-missing values in one row of a certain gene expression profile and imputes the missing value into a much higher dimensional space, to obtain better performance. RESULTS: A comparative study of our method with the previously developed methods has been presented for the estimation of the missing values on six gene expression data sets. Among the three different input-vector coding schemes we tried, the orthogonal input coding scheme obtains the best estimation results with the minimum Normalized Root Mean Squared Error (NRMSE). The results also demonstrate that the SVR method has powerful estimation ability on different kinds of data sets with relatively small NRMSE. CONCLUSION: The SVR impute method shows better performance than, or at least comparable with, the previously developed methods in present research. The outstanding estimation ability of this impute method is partly due to the use of the most missing value information by incorporating orthogonal input coding scheme. In addition, the solid theoretical foundation of SVR method also helps in estimation of performance together with orthogonal input coding scheme. The promising estimation ability demonstrated in the results section suggests that the proposed approach provides a proper solution to the missing value estimation problem. The source code of the SVR method is available from for non-commercial use

    Parameter selection and performance comparison of particle swarm optimization in sensor networks localization

    Get PDF
    Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors\u27 memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm

    PPSP: prediction of PK-specific phosphorylation site with Bayesian decision theory

    Get PDF
    BACKGROUND: As a reversible and dynamic post-translational modification (PTM) of proteins, phosphorylation plays essential regulatory roles in a broad spectrum of the biological processes. Although many studies have been contributed on the molecular mechanism of phosphorylation dynamics, the intrinsic feature of substrates specificity is still elusive and remains to be delineated. RESULTS: In this work, we present a novel, versatile and comprehensive program, PPSP (Prediction of PK-specific Phosphorylation site), deployed with approach of Bayesian decision theory (BDT). PPSP could predict the potential phosphorylation sites accurately for ~70 PK (Protein Kinase) groups. Compared with four existing tools Scansite, NetPhosK, KinasePhos and GPS, PPSP is more accurate and powerful than these tools. Moreover, PPSP also provides the prediction for many novel PKs, say, TRK, mTOR, SyK and MET/RON, etc. The accuracy of these novel PKs are also satisfying. CONCLUSION: Taken together, we propose that PPSP could be a potentially powerful tool for the experimentalists who are focusing on phosphorylation substrates with their PK-specific sites identification. Moreover, the BDT strategy could also be a ubiquitous approach for PTMs, such as sumoylation and ubiquitination, etc

    LOCSVMPSI: a web server for subcellular localization of eukaryotic proteins using SVM and profile of PSI-BLAST

    Get PDF
    Subcellular location of a protein is one of the key functional characters as proteins must be localized correctly at the subcellular level to have normal biological function. In this paper, a novel method named LOCSVMPSI has been introduced, which is based on the support vector machine (SVM) and the position-specific scoring matrix generated from profiles of PSI-BLAST. With a jackknife test on the RH2427 data set, LOCSVMPSI achieved a high overall prediction accuracy of 90.2%, which is higher than the prediction results by SubLoc and ESLpred on this data set. In addition, prediction performance of LOCSVMPSI was evaluated with 5-fold cross validation test on the PK7579 data set and the prediction results were consistently better than the previous method based on several SVMs using composition of both amino acids and amino acid pairs. Further test on the SWISSPROT new-unique data set showed that LOCSVMPSI also performed better than some widely used prediction methods, such as PSORTII, TargetP and LOCnet. All these results indicate that LOCSVMPSI is a powerful tool for the prediction of eukaryotic protein subcellular localization. An online web server (current version is 1.3) based on this method has been developed and is freely available to both academic and commercial users, which can be accessed by at

    ABatRe-Sim: A Comprehensive Framework for Automated Battery Recycling Simulation

    Full text link
    With the rapid surge in the number of on-road Electric Vehicles (EVs), the amount of spent lithium-ion (Li-ion) batteries is also expected to explosively grow. The spent battery packs contain valuable metal and materials that should be recovered, recycled, and reused. However, only less than 5% of the Li-ion batteries are currently recycled, due to a multitude of challenges in technology, logistics and regulation. Existing battery recycling is performed manually, which can pose a series of risks to the human operator as a consequence of remaining high voltage and chemical hazards. Therefore, there is a critical need to develop an automated battery recycling system. In this paper, we present ABatRe-sim, an open-source robotic battery recycling simulator, to facilitate the research and development in efficient and effective battery recycling au-omation. Specifically, we develop a detailed CAD model of the battery pack (with screws, wires, and battery modules), which is imported into Gazebo to enable robot-object interaction in the robot operating system (ROS) environment. It also allows the simulation of battery packs of various aging conditions. Furthermore, perception, planning, and control algorithms are developed to establish the benchmark to demonstrate the interface and realize the basic functionalities for further user customization. Discussions on the utilization and future extensions of the simulator are also presented

    Improvement of Liquid Fructose-Induced Adipose Tissue Insulin Resistance by Ginger Treatment in Rats Is Associated with Suppression of Adipose Macrophage-Related Proinflammatory Cytokines

    Get PDF
    Adipose tissue insulin resistance (Adipo-IR) results in excessive release of free fatty acids from adipose tissue, which plays a key role in the development of “lipotoxicity.” Therefore, amelioration of Adipo-IR may benefit the treatment of other metabolic abnormalities. Here we found that treatment with the alcoholic extract of ginger (50 mg/kg/day, by oral gavage) for five weeks attenuated liquid fructose-induced hyperinsulinemia and an increase in the homeostasis model assessment of insulin resistance (HOMA-IR) index in rats. More importantly, ginger reversed the increases in the Adipo-IR index and plasma nonesterified fatty acid concentrations during the oral glucose tolerance test assessment. Adipose gene/protein expression profiles revealed that ginger treatment suppressed CD68 and F4/80, two important macrophage accumulation markers. Consistently, the macrophage-associated cytokines tissue necrosis factor alpha and interleukin-6 were also downregulated. In contrast, insulin receptor substrate (IRS)-1, but not IRS-2, was upregulated. Moreover, monocyte chemotactic protein (MCP)-1 and its receptor chemokine (C-C motif) receptor-2 were also suppressed. Thus these results suggest that amelioration of fructose-induced Adipo-IR by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines

    A novel untrained SSVEP-EEG feature enhancement method using canonical correlation analysis and underdamped second-order stochastic resonance

    Get PDF
    ObjectiveCompared with the light-flashing paradigm, the ring-shaped motion checkerboard patterns avoid uncomfortable flicker or brightness modulation, improving the practical interactivity of brain-computer interface (BCI) applications. However, due to fewer harmonic responses and more concentrated frequency energy elicited by the ring-shaped checkerboard patterns, the mainstream untrained algorithms such as canonical correlation analysis (CCA) and filter bank canonical correlation analysis (FBCCA) methods have poor recognition performance and low information transmission rate (ITR).MethodsTo address this issue, a novel untrained SSVEP-EEG feature enhancement method using CCA and underdamped second-order stochastic resonance (USSR) is proposed to extract electroencephalogram (EEG) features.ResultsIn contrast to typical unsupervised dimensionality reduction methods such as common average reference (CAR), principal component analysis (PCA), multidimensional scaling (MDS), and locally linear embedding (LLE), CCA exhibits higher adaptability for SSVEP rhythm components.ConclusionThis study recruits 42 subjects to evaluate the proposed method and experimental results show that the untrained method can achieve higher detection accuracy and robustness.SignificanceThis untrained method provides the possibility of applying a nonlinear model from one-dimensional signals to multi-dimensional signals
    corecore