10 research outputs found

    Healable, Flexible Supercapacitors Based on Shape Memory Polymers

    No full text
    Supercapacitors as novel and efficient energy storage devices could provide a higher power density and energy density compared to other electronics and devices. However, traditional supercapacitors are readily damaged, which leads to degraded performance or even failure. To make them more durable and efficient, healable flexible shape memory-based supercapacitors were unprecedentedly explored by a transfer process, in which the conductive nano-carbon networks were decorated with pseudocapacitance materials, followed by embedding them into a shape memory polymer matrix containing healing reagents. The composite exhibited flexibility, supercapacitance and self-healing capability originating from the shape memory effect and healing reagent. The morphologies, thermal, mechanical and capacitive properties, and the self-healability of the composite were investigated. In particular, the influence of the compositions on the healing efficiency was considered. The optimized composite exhibited good capacitance (27.33 mF cm−1), stability (only 4.08% capacitance loss after 1500 cycles) and healable property (up to 93% of the healing efficiency). The findings demonstrated how to endow the flexible polymeric electronics with healable bio-mimetic properties and may greatly benefit the application of intelligent polymers in the field of multi-functional electrical materials

    Shape Memory-Enhanced Electrical Self-Healing of Stretchable Electrodes

    No full text
    A novel shape memory-based self-healable stretchable electrode was explored by embedding the silver nanowires (AgNWs) network into a healable polymer matrix. Unlike the traditional shape memory-assisted self-healing, pre-stretching to the temporary shapes, which was fixed in a typical shape, memory thermo-mechanical programming significantly enhanced the thermo-triggered healing performance. The morphological as well as conduction variations during the healing process were investigated. The enhancing effect of the pre-stretching on the healing efficiency was emphasized, which was expected to attribute to the release of the pre-stored strain energy driving the closure of the scratch. The findings disclosed how to utilize the shape memory effect to improve the biomimetic properties for the stretchable electrodes, which may greatly benefit the application of the intelligent polymers in the field of multi-functional flexible electronics

    Phytochemicals from fern species: potential for medicine applications

    No full text
    Ferns are an important phytogenetic bridge between lower and higher plants. Historically they have been used in many ways by humans, including as ornamental plants, domestic utensils, foods, and in handicrafts. In addition, they have found uses as medicinal herbs. Ferns produce a wide array of secondary metabolites endowed with different bioactivities that could potentially be useful in the treatment of many diseases. However, there is currently relatively little information in the literature on the phytochemicals present in ferns and their pharmacological applications, and the most recent review of the literature on the occurrence, chemotaxonomy and physiological activity of fern secondary metabolites was published over 20 years ago, by Soeder (Bot Rev 51:442\u2013536, 1985). Here, we provide an updated review of this field, covering recent findings concerning the bioactive phytochemicals and pharmacology of fern species

    Phytochemicals from fern species: potential for medicine applications

    No full text
    corecore