76,906 research outputs found

    Sampled-data filtering with error covariance assignment

    Get PDF
    Copyright [2001] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.We consider the sampled-data filtering problem by proposing a new performance criterion in terms of the estimation error covariance. An innovation approach to sampled-data filtering is presented. First, the definition of the estimation covariance e for a sampled-data system is given, then the sampled-data filtering problem is reduced to the Kalman filter design problem for a fictitious discrete-time system, and finally, an effective method is developed to design discrete-time Kalman filters in such a way that the resulting sampled-data estimation covariance achieves a prescribed value. We derive both the existence conditions and the explicit expression of the desired filters and provide an illustrative numerical example to demonstrate the directness and flexibility of the present design metho

    A Model of Low-lying States in Strongly Interacting Electroweak Symmetry-Breaking Sector

    Full text link
    It is proposed that, in a strongly-interacting electroweak sector, besides the Goldstone bosons, the coexistence of a scalar state (HH) and vector resonances such as A1A_1 [IG(JP)=1(1+I^G(J^P)=1^-(1^+)], VV [1+(1)1^+(1^-)] and ωH\omega_H^{} [0(1)0^-(1^-)] is required by the proper Regge behavior of the forward scattering amplitudes. This is a consequence of the following well-motivated assumptions: (a). Adler-Weisberger-type sum rules and the superconvergence relations for scattering amplitudes hold in this strongly interacting sector; (b). the sum rules at t=0t=0 are saturated by a minimal set of low-lying states with appropriate quantum numbers. It therefore suggests that a complete description should include all these resonances. These states may lead to distinctive experimental signatures at future colliders.Comment: revised version, to appear in Modern Physics Letters A; file also available via anonymous ftp at ftp://ucdhep.ucdavis.edu/han/sews/lowlying.p

    Open-closed field algebras

    Full text link
    We introduce the notions of open-closed field algebra and open-closed field algebra over a vertex operator algebra V. In the case that V satisfies certain finiteness and reductivity conditions, we show that an open-closed field algebra over V canonically gives an algebra over a \C-extension of the Swiss-cheese partial operad. We also give a tensor categorical formulation and categorical constructions of open-closed field algebras over V.Comment: 55 pages, largely revised, an old subsection is deleted, a few references are adde

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.

    Heavy Pentaquarks

    Full text link
    We construct the spin-flavor wave functions of the possible heavy pentaquarks containing an anti-charm or anti-bottom quark using various clustered quark models. Then we estimate the masses and magnetic moments of the JP=12+J^P={1\over 2}^+ or 32+{3\over 2}^+ heavy pentaquarks. We emphasize the difference in the predictions of these models. Future experimental searches at BESIII, CLEOc, BELLE, and LEP may find these interesting states

    Pentaquark Magnetic Moments In Different Models

    Full text link
    We calculate the magnetic moments of the pentaquark states from different models and compare our results with predictions of other groups.Comment: 17 pages, no figur
    corecore