65,818 research outputs found

    Sigma_c Dbar and Lambda_c Dbar states in a chiral quark model

    Full text link
    The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin S=1/2 are dynamically investigated within the framework of a chiral constituent quark model by solving a resonating group method (RGM) equation. The results show that the interaction between Sigma_c and Dbar is attractive, which consequently results in a Sigma_c Dbar bound state with the binding energy of about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar and Lambda_c Dbar is found to be negligible due to the fact that the gap between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.Comment: 7 pages,2 figures. arXiv admin note: text overlap with arXiv:nucl-th/0606056 by other author

    Beaming Effects in Gamma-Ray Bursts

    Get PDF
    Based on a refined generic dynamical model, we investigate afterglows from jetted gamma-ray burst (GRB) remnants numerically. In the relativistic phase, the light curve break could marginally be seen. However, an obvious break does exist at the transition from the relativistic phase to the non-relativistic phase, which typically occurs at time 10 to 30 days. It is very interesting that the break is affected by many parameters, especially by the electron energy fraction (xi_e), and the magnetic energy fraction (xi_B^2). Implication of orphan afterglow surveys on GRB beaming is investigated. The possible existence of a kind of cylindrical jets is also discussed.Comment: Minor changes; 10 pages, with 9 eps figures embedded. Talk given at the Sixth Pacific Rim Conference on Stellar Astrophysics (Xi'an, China, July 11-17, 2002). A slightly revised version will appear in the proceeding

    An energetic blast wave from the December 27 giant flare of the soft gamma-ray repeater 1806-20

    Full text link
    Recent follow-up observations of the December 27 giant flare of SGR 1806-20 have detected a multiple-frequency radio afterglow from 240 MHz to 8.46 GHz, extending in time from a week to about a month after the flare. The angular size of the source was also measured for the first time. Here we show that this radio afterglow gives the first piece of clear evidence that an energetic blast wave sweeps up its surrounding medium and produces a synchrotron afterglow, the same mechanism as established for gamma-ray burst afterglows. The optical afterglow is expected to be intrinsically as bright as mR13m_R\simeq13 at t\la 0.1 days after the flare, but very heavy extinction makes the detection difficult because of the low galactic latitude of the source. Rapid infrared follow-up observations to giant flares are therefore crucial for the low-latitude SGRs, while for high-latitude SGRs (e.g. SGR 0526-66), rapid follow-ups should result in identification of their possible optical afterglows. Rapid multi-wavelength follow-ups will also provide more detailed information of the early evolution of a fireball as well as its composition.Comment: Updated version, accepted for publication in ApJ Letter

    An experimental study for a miniature Stirling refrigerator

    Get PDF
    Experimental results of a miniature two-stage Stirling cryocooler are introduced. The influence of filling gas pressure and refrigeration temperature on the refrigerating capacity along with the relationship between parameters was measured. The valley pressure corresponding to the lowest refrigeration temperature and the cooldown time versus operating pressure are discussed. The coefficient of performance and thermodynamic efficiency of the cryocooler are calculated based on experimental data

    Ultrasound facilitated marking of gastrointestinal tissue with fluorescent material

    Get PDF
    The epithelial lining of the gastrointestinal (GI) mucosal layer is an effective barrier to the contents of the gut lumen. Selective channels and tight junctions prevent contamination of the sterile internal environment of the body. Conversely, the gut barrier also prevents desired agents from entering the GI tissue. This hinders marking of tissue for further clinical follow-up. Focused ultrasound (US) may provide a potential means of overcoming the gut barrier and allowing penetration of material beyond it which was explored in a series of tests. Experiments were carried out on 14 individual postmortem-obtained murine small bowel samples for a total of 23 sonication/control paired tests. A favourable result of 80% indicated that focused US can pass a nanoscale fluorescent agent through the gut barrier. Further work is required to elucidate where the agent resides, intercellular or intracellular, post-sonication

    Strain engineering in graphene by laser irradiation

    No full text
    We demonstrate that the Raman spectrum of graphene on lithium niobate can be controlled locally by continuous exposure to laser irradiation. We interpret our results in terms of changes to doping and mechanical strain and show that our observations are consistent with light-induced gradual strain relaxation in the graphene layer
    corecore