134,075 research outputs found

    SENS-5D trajectory and wind-sensitivity calculations for unguided rockets

    Get PDF
    A computational procedure is described which numerically integrates the equations of motion of an unguided rocket. Three translational and two angular (roll discarded) degrees of freedom are integrated through the final burnout; and then, through impact, only three translational motions are considered. Input to the routine is: initial time, altitude and velocity, vehicle characteristics, and other defined options. Input format has a wide range of flexibility for special calculations. Output is geared mainly to the wind-weighting procedure, and includes summary of trajectory at burnout, apogee and impact, summary of spent-stage trajectories, detailed position and vehicle data, unit-wind effects for head, tail and cross winds, coriolis deflections, range derivative, and the sensitivity curves (the so called F(Z) and DF(Z) curves). The numerical integration procedure is a fourth-order, modified Adams-Bashforth Predictor-Corrector method. This method is supplemented by a fourth-order Runge-Kutta method to start the integration at t=0 and whenever error criteria demand a change in step size

    Solutions of special asymptotics to the Einstein constraint equations

    Full text link
    We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear in Class. Quantum Gra

    Structure of polydisperse inverse ferrofluids: Theory and computer simulation

    Full text link
    By using theoretical analysis and molecular dynamics simulations, we investigate the structure of colloidal crystals formed by nonmagnetic microparticles (or magnetic holes) suspended in ferrofluids (called inverse ferrofluids), by taking into account the effect of polydispersity in size of the nonmagnetic microparticles. Such polydispersity often exists in real situations. We obtain an analytical expression for the interaction energy of monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered tetragonal (bct) lattices are shown to possess the lowest energy when compared with other sorts of lattices and thus serve as the ground state of the systems. Also, the effect of microparticle size distributions (namely, polydispersity in size) plays an important role in the formation of various kinds of structural configurations. Thus, it seems possible to fabricate colloidal crystals by choosing appropriate polydispersity in size.Comment: 22 pages, 8 figure

    Diffraction of ultra-cold fermions by quantized light fields: Standing versus traveling waves

    Full text link
    We study the diffraction of quantum degenerate fermionic atoms off of quantized light fields in an optical cavity. We compare the case of a linear cavity with standing wave modes to that of a ring cavity with two counter-propagating traveling wave modes. It is found that the dynamics of the atoms strongly depends on the quantization procedure for the cavity field. For standing waves, no correlations develop between the cavity field and the atoms. Consequently, standing wave Fock states yield the same results as a classical standing wave field while coherent states give rise to a collapse and revivals in the scattering of the atoms. In contrast, for traveling waves the scattering results in quantum entanglement of the radiation field and the atoms. This leads to a collapse and revival of the scattering probability even for Fock states. The Pauli Exclusion Principle manifests itself as an additional dephasing of the scattering probability

    Elastic energy of proteins and the stages of protein folding

    Full text link
    We propose a universal elastic energy for proteins, which depends only on the radius of gyration RgR_{g} and the residue number NN. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form Rg∼NνR_{g}\sim N^{\nu} in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5,3/7,2/5\nu = 3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding

    Transverse momentum dependence in the perturbative calculation of pion form factor

    Full text link
    By reanalysing transverse momentum dependence in the perturbative calculation of pion form factor an improved expression of pion form factor which takes into account the transverse momentum dependenc in hard scattering amplitude and intrinsic transverse momentum dependence associated with pion wave functions is given to leading order, which is available for momentum transfers of the order of a few GeV as well as for Q→∞Q \to \infty. Our scheme can be extended to evaluate the contributions to the pion form factor beyond leading order.Comment: 13 pages in LaTeX, plus 3 Postscript figure

    Parameterization of the antiproton inclusive production cross section on nuclei

    Full text link
    A new parameterization of the antiproton inclusive production cross section in proton-proton and proton-nucleus collisions is proposed. A sample of consistent pA->pbar X$ experimental data sets measured on 1<A<208 nuclei, from 12 GeV up to 400 GeV incident energy, have been used to constrain the parameters. A broader energy domain is covered for the pp->pbar X reaction with a simplified functional form used in the fits. The agreement obtained with the data is good. The results are discussed.Comment: 10 pages, 11 figures, 7 tables, submitted to Phys. Rev.

    Mesh refinement in a two-dimensional large eddy simulation of a forced shear layer

    Get PDF
    A series of large eddy simulations are made of a forced shear layer and compared with experimental data. Several mesh densities were examined to separate the effect of numerical inaccuracy from modeling deficiencies. The turbulence model that was used to represent small scale, 3-D motions correctly predicted some gross features of the flow field, but appears to be structurally incorrect. The main effect of mesh refinement was to act as a filter on the scale of vortices that developed from the inflow boundary conditions
    • …
    corecore